These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 178383)

  • 1. [Lipid oxidation in bilayer lipid membranes linked with the reaction of oxidation of NAD.H by atmospheric oxygen].
    Shchipumov IuA; Sokolov VS; Iaguzhinskiĭ LS; Boguslavskiĭ LI
    Biofizika; 1976; 21(2):280-5. PubMed ID: 178383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Potential generation on bilayer lipid membranes, containing Fe3+ and ubiquinone, during oxidation-reduction reactions at the separation boundary].
    Ismailov AD; Boguslavskiĭ LI; Iaguzhinskiĭ LS
    Dokl Akad Nauk SSSR; 1974 May; 216(3):674-7. PubMed ID: 4364859
    [No Abstract]   [Full Text] [Related]  

  • 3. [Potential generation in bilayer lipid membranes in the system NAD-H-flavin-Q6-02].
    Ismailov AD; Boguslavskiĭ LI; Iaguzhinskiĭ LS; Skulachev VP
    Dokl Akad Nauk SSSR; 1973 May; 210(3):709-12. PubMed ID: 4353024
    [No Abstract]   [Full Text] [Related]  

  • 4. [Dark potential generation on bilayer lipid membranes containing chlorophyll].
    Boguslavskiĭ LI; Lozhkin BT; Kiselev BA
    Dokl Akad Nauk SSSR; 1975; 222(1):228-31. PubMed ID: 236896
    [No Abstract]   [Full Text] [Related]  

  • 5. [Interaction of cytochrome c with bilayer membranes].
    Ksenzhek OS; Koganov MM; Gevod VS
    Biofizika; 1977; 22(4):616-20. PubMed ID: 198014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential generation in bilayer lipid membranes in the NADH-flavin mononucleotide-ubiquinone-6-O2 system.
    Yaguzhinsky LS; Boguslavsky LI; Ismailov AD
    Biochim Biophys Acta; 1974 Oct; 368(1):22-8. PubMed ID: 4371323
    [No Abstract]   [Full Text] [Related]  

  • 7. [Free radical lipid oxidation and physical properties of lipid layer of biological membranes].
    Vladimirov IuA
    Biofizika; 1987; 32(5):830-44. PubMed ID: 3318940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization of the reaction layer in the immediate membrane vicinity.
    Antonenko YN; Pohl P; Rosenfeld E
    Arch Biochem Biophys; 1996 Sep; 333(1):225-32. PubMed ID: 8806775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of incorporation and removal of cholesterol on the lipid bilayer viscosity and the rate of oxidative reactions in rat liver microsomal membranes].
    Borodin EA; Dobretsov GE; Karasevich EI; Karuzina II; Kariakin AV
    Biokhimiia; 1981 Jun; 46(6):1109-18. PubMed ID: 7260196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of key enzymes in microsomal and mitochondrial membranes depends on the redox reactions involving lipid radicals.
    Dmitriev LF
    Membr Cell Biol; 2001 Jul; 14(5):649-62. PubMed ID: 11699868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of oxidation of copoly (L-alanine, L-methionine) membranes on oxygen permeability and tensile properties.
    Aiba S; Minoura N; Fujiwara Y
    J Biomed Mater Res; 1982 May; 16(3):181-94. PubMed ID: 7085683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible redox of NADH and NAD+ at a hybrid lipid bilayer membrane using ubiquinone.
    Ma W; Li DW; Sutherland TC; Li Y; Long YT; Chen HY
    J Am Chem Soc; 2011 Aug; 133(32):12366-9. PubMed ID: 21774485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of ethanol with biological membranes: the formation of non-bilayer structures within the membrane interior and their significance.
    Gurtovenko AA; Anwar J
    J Phys Chem B; 2009 Feb; 113(7):1983-92. PubMed ID: 19199697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active transport of Ca2+ by an artificial photosynthetic membrane.
    Bennett IM; Farfano HM; Bogani F; Primak A; Liddell PA; Otero L; Sereno L; Silber JJ; Moore AL; Moore TA; Gust D
    Nature; 2002 Nov; 420(6914):398-401. PubMed ID: 12459780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I).
    Zu Y; Shannon RJ; Hirst J
    J Am Chem Soc; 2003 May; 125(20):6020-1. PubMed ID: 12785808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Permeability of bilayer phospholipid membranes to superoxide oxygen radicals].
    Gus'kova RA; Ivanov II; Kol'tover VK; Akhobadze VV; Rubin AB
    Biokhimiia; 1984 May; 49(5):758-66. PubMed ID: 6331532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipid-linked quinones-mediated electron transfer on an electrode modified with lipid bilayers.
    Suemori Y; Nagata M; Kondo M; Ishigure S; Dewa T; Ohtsuka T; Nango M
    Colloids Surf B Biointerfaces; 2008 Jan; 61(1):106-12. PubMed ID: 17681456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myelin is a preferential target of aluminum-mediated oxidative damage.
    Verstraeten SV; Golub MS; Keen CL; Oteiza PI
    Arch Biochem Biophys; 1997 Aug; 344(2):289-94. PubMed ID: 9264541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of the respiratory chain redox state on mitochondrial membrane permeability for K+ ions].
    Kudzina LIu; Iurkov IS; Polteva NA; Evtodienko IuV; Kondrashova MN
    Biokhimiia; 1979 Jan; 44(1):154-9. PubMed ID: 420874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.