These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 17838810)

  • 1. Circadian system controlling release of sperm in the insect testes.
    Giebultowicz JM; Riemann JG; Raina AK; Ridgway RL
    Science; 1989 Sep; 245(4922):1098-100. PubMed ID: 17838810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA interference of the period gene affects the rhythm of sperm release in moths.
    Kotwica J; Bebas P; Gvakharia BO; Giebultowicz JM
    J Biol Rhythms; 2009 Feb; 24(1):25-34. PubMed ID: 19150927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diurnal rhythm in expression and release of yolk protein in the testis of Spodoptera littoralis (Lepidoptera: Noctuidae).
    Kotwica J; Joachimiak E; Polanska MA; Majewska MM; Giebultowicz JM; Bebas P
    Insect Biochem Mol Biol; 2011 Apr; 41(4):264-72. PubMed ID: 21216288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ontogeny of the circadian system controlling release of sperm from the insect testis.
    Giebultowicz JM; Joy JE
    J Biol Rhythms; 1992; 7(3):203-12. PubMed ID: 1421474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of light and temperature on the circadian system controlling sperm release in moth Spodoptera littoralis.
    Syrova Z; Sauman I; Giebultowicz JM
    Chronobiol Int; 2003 Sep; 20(5):809-21. PubMed ID: 14535355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clock-controlled rhythm of ecdysteroid levels in the haemolymph and testes, and its relation to sperm release in the Egyptian cotton leafworm, Spodoptera littoralis.
    Polanska MA; Maksimiuk-Ramirez E; Ciuk MA; Kotwica J; Bebas P
    J Insect Physiol; 2009 May; 55(5):426-34. PubMed ID: 19233333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian system in the insect testes controls the rhythmic release of sperm.
    Giebultowicz JM; Riemann JG
    Prog Clin Biol Res; 1990; 341B():655-60. PubMed ID: 2217356
    [No Abstract]   [Full Text] [Related]  

  • 8. Phase angle difference alters coupling relations of functionally distinct circadian oscillators revealed by rhythm splitting.
    Gorman MR; Steele NA
    J Biol Rhythms; 2006 Jun; 21(3):195-205. PubMed ID: 16731659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian rhythms of gene expression in Chlamydomonas reinhardtii: circadian cycling of mRNA abundances of cab II, and possibly of beta-tubulin and cytochrome c.
    Jacobshagen S; Johnson CH
    Eur J Cell Biol; 1994 Jun; 64(1):142-52. PubMed ID: 7957302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulated activity mediates phase shifts in the hamster circadian clock induced by dark pulses or benzodiazepines.
    Van Reeth O; Turek FW
    Nature; 1989 May; 339(6219):49-51. PubMed ID: 2654641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time keeping by the quail's eye: circadian regulation of melatonin production.
    Steele CT; Tosini G; Siopes T; Underwood H
    Gen Comp Endocrinol; 2006 Feb; 145(3):232-6. PubMed ID: 16277985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for generating circadian rhythm by coupling ultradian oscillators.
    Paetkau V; Edwards R; Illner R
    Theor Biol Med Model; 2006 Feb; 3():12. PubMed ID: 16504091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro evidence of photoreception in the chick pineal gland and its interaction with the circadian clock controlling N-acetyltransferase (NAT).
    Kasal CA; Perez-Polo JR
    J Neurosci Res; 1980; 5(6):579-85. PubMed ID: 7205994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The release of a pheromonotropic neuropeptide, PBAN, in the turnip moth Agrotis segetum, exhibits a circadian rhythm.
    Závodská R; von Wowern G; Löfstedt C; Rosén W; Sauman I
    J Insect Physiol; 2009 May; 55(5):435-40. PubMed ID: 19041654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of circadian and photoperiodic system level properties from interactions among pacemaker cells.
    Beersma DG; van Bunnik BA; Hut RA; Daan S
    J Biol Rhythms; 2008 Aug; 23(4):362-73. PubMed ID: 18663243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian rhythm in pineal N-acetyltransferase activity: phase shifting by light pulses (I).
    Binkley S; Muller G; Hernandez T
    J Neurochem; 1981 Sep; 37(3):798-800. PubMed ID: 7276958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian rhythms of ocular melatonin in the wrasse Halichoeres tenuispinnis, a labrid teleost.
    Iigo M; Ikeda E; Sato M; Kawasaki S; Noguchi F; Nishi G
    Gen Comp Endocrinol; 2006 Jan; 145(1):32-8. PubMed ID: 16112672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian effects of light no brighter than moonlight.
    Evans JA; Elliott JA; Gorman MR
    J Biol Rhythms; 2007 Aug; 22(4):356-67. PubMed ID: 17660452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scotopic illumination enhances entrainment of circadian rhythms to lengthening light:dark cycles.
    Gorman MR; Kendall M; Elliott JA
    J Biol Rhythms; 2005 Feb; 20(1):38-48. PubMed ID: 15654069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different mechanisms of phase delays and phase advances of the circadian rhythm in rat pineal N-acetyltransferase activity.
    Illnerová H; Vanĕcek J; Hoffmann K
    J Biol Rhythms; 1989; 4(2):187-200. PubMed ID: 2519588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.