These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17839018)

  • 41. Duplication of a conditionally dispensable chromosome carrying pea pathogenicity (PEP) gene clusters in Nectria haematococca.
    Garmaroodi HS; Taga M
    Mol Plant Microbe Interact; 2007 Dec; 20(12):1495-504. PubMed ID: 17990957
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of a novel pelD gene expressed uniquely in planta by Fusarium solani f. sp. pisi (Nectria haematococca, mating type VI) and characterization of its protein product as an endo-pectate lyase.
    Guo W; González-Candelas L; Kolattukudy PE
    Arch Biochem Biophys; 1996 Aug; 332(2):305-12. PubMed ID: 8806739
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The supernumerary chromosome of Nectria haematococca that carries pea-pathogenicity-related genes also carries a trait for pea rhizosphere competitiveness.
    Rodriguez-Carres M; White G; Tsuchiya D; Taga M; VanEtten HD
    Appl Environ Microbiol; 2008 Jun; 74(12):3849-56. PubMed ID: 18408061
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of elements in the PDA1 promoter of Nectria haematococca necessary for a high level of transcription in vitro.
    Ruan Y; Straney DC
    Mol Gen Genet; 1996 Jan; 250(1):29-38. PubMed ID: 8569685
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetic and genomic dissection of the Cochliobolus heterostrophus Tox1 locus controlling biosynthesis of the polyketide virulence factor T-toxin.
    Turgeon BG; Baker SE
    Adv Genet; 2007; 57():219-61. PubMed ID: 17352906
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Homoserine and asparagine are host signals that trigger in planta expression of a pathogenesis gene in Nectria haematococca.
    Yang Z; Rogers LM; Song Y; Guo W; Kolattukudy PE
    Proc Natl Acad Sci U S A; 2005 Mar; 102(11):4197-202. PubMed ID: 15753300
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Host recognition by pathogenic fungi through plant flavonoids.
    Straney D; Khan R; Tan R; Bagga S
    Adv Exp Med Biol; 2002; 505():9-22. PubMed ID: 12083470
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis.
    Kämper J; Kahmann R; Bölker M; Ma LJ; Brefort T; Saville BJ; Banuett F; Kronstad JW; Gold SE; Müller O; Perlin MH; Wösten HA; de Vries R; Ruiz-Herrera J; Reynaga-Peña CG; Snetselaar K; McCann M; Pérez-Martín J; Feldbrügge M; Basse CW; Steinberg G; Ibeas JI; Holloman W; Guzman P; Farman M; Stajich JE; Sentandreu R; González-Prieto JM; Kennell JC; Molina L; Schirawski J; Mendoza-Mendoza A; Greilinger D; Münch K; Rössel N; Scherer M; Vranes M; Ladendorf O; Vincon V; Fuchs U; Sandrock B; Meng S; Ho EC; Cahill MJ; Boyce KJ; Klose J; Klosterman SJ; Deelstra HJ; Ortiz-Castellanos L; Li W; Sanchez-Alonso P; Schreier PH; Häuser-Hahn I; Vaupel M; Koopmann E; Friedrich G; Voss H; Schlüter T; Margolis J; Platt D; Swimmer C; Gnirke A; Chen F; Vysotskaia V; Mannhaupt G; Güldener U; Münsterkötter M; Haase D; Oesterheld M; Mewes HW; Mauceli EW; DeCaprio D; Wade CM; Butler J; Young S; Jaffe DB; Calvo S; Nusbaum C; Galagan J; Birren BW
    Nature; 2006 Nov; 444(7115):97-101. PubMed ID: 17080091
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Six new genes required for production of T-toxin, a polyketide determinant of high virulence of Cochliobolus heterostrophus to maize.
    Inderbitzin P; Asvarak T; Turgeon BG
    Mol Plant Microbe Interact; 2010 Apr; 23(4):458-72. PubMed ID: 20192833
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice.
    Moreno AB; Peñas G; Rufat M; Bravo JM; Estopà M; Messeguer J; San Segundo B
    Mol Plant Microbe Interact; 2005 Sep; 18(9):960-72. PubMed ID: 16167766
    [TBL] [Abstract][Full Text] [Related]  

  • 51. BTH and BABA induce resistance in pea against rust (Uromyces pisi) involving differential phytoalexin accumulation.
    Barilli E; Rubiales D; Amalfitano C; Evidente A; Prats E
    Planta; 2015 Nov; 242(5):1095-106. PubMed ID: 26059606
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tissue-specific localization of pea root infection by Nectria haematococca. Mechanisms and consequences.
    Gunawardena U; Rodriguez M; Straney D; Romeo JT; VanEtten HD; Hawes MC
    Plant Physiol; 2005 Apr; 137(4):1363-74. PubMed ID: 15778461
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions?
    Chagué V; Danit LV; Siewers V; Schulze-Gronover C; Tudzynski P; Tudzynski B; Sharon A
    Mol Plant Microbe Interact; 2006 Jan; 19(1):33-42. PubMed ID: 16404951
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nht1, a transposable element cloned from a dispensable chromosome in Nectria haematococca.
    Enkerli J; Bhatt G; Covert SF
    Mol Plant Microbe Interact; 1997 Aug; 10(6):742-9. PubMed ID: 9245836
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular cloning and biochemical characterization of isoflav-3-ene synthase, a key enzyme of the biosyntheses of (+)-pisatin and coumestrol.
    Uchida K; Aoki T; Suzuki H; Akashi T
    Plant Biotechnol (Tokyo); 2020 Sep; 37(3):301-310. PubMed ID: 33088193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genetic Analysis of the Role of Phytoalexin Detoxification in Virulence of the Fungus Nectria haematococca on Chickpea (Cicer arietinum).
    Miao VP; Vanetten HD
    Appl Environ Microbiol; 1992 Mar; 58(3):809-14. PubMed ID: 16348672
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of pisatin on Dictyostelium discoideum: its relationship to inducible resistance to nystatin and extension to other isoflavonoid phytoalexins.
    Prasanna TB; Vairamani M; Kasbekar DP
    Arch Microbiol; 1998 Oct; 170(4):309-12. PubMed ID: 9732446
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pisatin metabolism in pea (Pisum sativum L.) cell suspension cultures.
    Borejsza-Wysocki W; Borejsza-Wysocka E; Hrazdina G
    Plant Cell Rep; 1997 Feb; 16(5):304-309. PubMed ID: 30727668
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of the phytoalexin pisatin by a methyltransferase from pea.
    Sweigard JA; Matthews DE; Vanetten HD
    Plant Physiol; 1986 Jan; 80(1):277-9. PubMed ID: 16664598
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dictyostelium's pisatin response.
    Kasbekar DP
    J Biosci; 2022; 47():. PubMed ID: 36510437
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.