These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17840280)

  • 1. Oxygen isotope constraints on the origin of impact glasses from the cretaceous-tertiary boundary.
    Blum JD; Chamberlain CP
    Science; 1992 Aug; 257(5073):1104-7. PubMed ID: 17840280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Precursor of the Cretaceous-Tertiary Boundary Clays at Stevns Klint, Denmark, and DSDP Hole 465A.
    Kastner M; Asaro F; Michel HV; Alvarez W; Alvarez LW
    Science; 1984 Oct; 226(4671):137-43. PubMed ID: 17814325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The age of parana flood volcanism, rifting of gondwanaland, and the jurassic-cretaceous boundary.
    Renne PR; Ernesto M; Pacca IG; Coe RS; Glen JM; Prévot M; Perrin M
    Science; 1992 Nov; 258(5084):975-9. PubMed ID: 17794593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coeval 40Ar/39Ar Ages of 65.0 Million Years Ago from Chicxulub Crater Melt Rock and Cretaceous-Tertiary Boundary Tektites.
    Swisher CC; Grajales-Nishimura JM; Montanari A; Margolis SV; Claeys P; Alvarez W; Renne P; Cedillo-Pardoa E; Maurrasse FJ; Curtis GH; Smit J; McWilliams MO
    Science; 1992 Aug; 257(5072):954-8. PubMed ID: 17789640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering.
    Misra S; Froelich PN
    Science; 2012 Feb; 335(6070):818-23. PubMed ID: 22282473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 40Ar/39Ar Age of Cretaceous-Tertiary Boundary Tektites from Haiti.
    Izett GA; Dalrymple GB; Snee LW
    Science; 1991 Jun; 252(5012):1539-42. PubMed ID: 17834880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraterrestrial cause for the cretaceous-tertiary extinction.
    Alvarez LW; Alvarez W; Asaro F; Michel HV
    Science; 1980 Jun; 208(4448):1095-108. PubMed ID: 17783054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass mortality and its environmental and evolutionary consequences.
    Hsü KJ; He Q; McKenzie JA; Weissert H; Perch-Nielsen K; Oberhänsli H; Kelts K; Labrecque J; Tauxe L; Krähenbühl U; Percival SF; Wright R; Karpoff AM; Petersen N; Tucker P; Poore RZ; Gombos AM; Pisciotto K; Carman MF; Schreiber E
    Science; 1982 Apr; 216(4543):249-56. PubMed ID: 17832725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtektites, microkrystites, and spinels from a late pliocene asteroid impact in the southern ocean.
    Margolis SV; Claeys P; Kyte FT
    Science; 1991 Mar; 251(5001):1594-7. PubMed ID: 17793144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comet dust as a source of amino acids at the Cretaceous/Tertiary boundary.
    Zahnle K; Grinspoon D
    Nature; 1990 Nov; 348(6297):157-60. PubMed ID: 11536472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts, tsunamis, and the haitian cretaceous-tertiary boundary layer.
    Maurrasse FJ; Sen G
    Science; 1991 Jun; 252(5013):1690-3. PubMed ID: 17751972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the ratio of strontium-87 to strontium-86 in seawater from cretaceous to present.
    Hess J; Bender ML; Schilling JG
    Science; 1986 Feb; 231(4741):979-84. PubMed ID: 17740296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming.
    Svensen H; Planke S; Malthe-Sørenssen A; Jamtveit B; Myklebust R; Rasmussen Eidem T; Rey SS
    Nature; 2004 Jun; 429(6991):542-5. PubMed ID: 15175747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary.
    Wible JR; Rougier GW; Novacek MJ; Asher RJ
    Nature; 2007 Jun; 447(7147):1003-6. PubMed ID: 17581585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High temperatures in the Late Cretaceous Arctic Ocean.
    Jenkyns HC; Forster A; Schouten S; Sinninghe Damsté JS
    Nature; 2004 Dec; 432(7019):888-92. PubMed ID: 15602558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen-17 nuclear magnetic resonance study of the structure of mixed cation calcium-sodium silicate glasses at high pressure: implications for molecular link to element partitioning between silicate liquids and crystals.
    Lee SK; Cody GD; Fei Y; Mysen BO
    J Phys Chem B; 2008 Sep; 112(37):11756-61. PubMed ID: 18712911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event.
    Hesselbo SP; Grocke DR; Jenkyns HC; Bjerrum CJ; Farrimond P; Morgans Bell HS ; Green OR
    Nature; 2000 Jul; 406(6794):392-5. PubMed ID: 10935632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A major meteorite impact on the Earth 65 million years ago: evidence from the cretaceous-tertiary boundary clay.
    Ganapathy R
    Science; 1980 Aug; 209(4459):921-3. PubMed ID: 17810987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seawater sulfur isotope fluctuations in the Cretaceous.
    Paytan A; Kastner M; Campbell D; Thiemens MH
    Science; 2004 Jun; 304(5677):1663-5. PubMed ID: 15192227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remnants of the early solar system water enriched in heavy oxygen isotopes.
    Sakamoto N; Seto Y; Itoh S; Kuramoto K; Fujino K; Nagashima K; Krot AN; Yurimoto H
    Science; 2007 Jul; 317(5835):231-3. PubMed ID: 17569827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.