These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1784122)

  • 21. Visual motion speed determines a behavioral switch from forward flight to expansion avoidance in Drosophila.
    Reiser MB; Dickinson MH
    J Exp Biol; 2013 Feb; 216(Pt 4):719-32. PubMed ID: 23197097
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Why flying locusts do not crash.
    Bacon J
    Nature; 1985 May 9-15; 315(6015):94-5. PubMed ID: 3990820
    [No Abstract]   [Full Text] [Related]  

  • 23. Object representation and distance encoding in three-dimensional environments by a neural circuit in the visual system of the blowfly.
    Liang P; Heitwerth J; Kern R; Kurtz R; Egelhaaf M
    J Neurophysiol; 2012 Jun; 107(12):3446-57. PubMed ID: 22423002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bilateral flight muscle activity predicts wing kinematics and 3-dimensional body orientation of locusts responding to looming objects.
    McMillan GA; Loessin V; Gray JR
    J Exp Biol; 2013 Sep; 216(Pt 17):3369-80. PubMed ID: 23737560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Habituated visual neurons in locusts remain sensitive to novel looming objects.
    Gray JR
    J Exp Biol; 2005 Jul; 208(Pt 13):2515-32. PubMed ID: 15961738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predator versus prey: locust looming-detector neuron and behavioural responses to stimuli representing attacking bird predators.
    Santer RD; Rind FC; Simmons PJ
    PLoS One; 2012; 7(11):e50146. PubMed ID: 23209660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Behavioral analysis of polarization vision in tethered flying locusts.
    Mappes M; Homberg U
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jan; 190(1):61-8. PubMed ID: 14648100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robustness of the tuning of fly visual interneurons to rotatory optic flow.
    Karmeier K; Krapp HG; Egelhaaf M
    J Neurophysiol; 2003 Sep; 90(3):1626-34. PubMed ID: 12736239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local motion adaptation enhances the representation of spatial structure at EMD arrays.
    Li J; Lindemann JP; Egelhaaf M
    PLoS Comput Biol; 2017 Dec; 13(12):e1005919. PubMed ID: 29281631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neurophysiological studies of flight-related density-dependent phase characteristics in locusts.
    Ayali A; Fuchs E; Kutsch W
    Acta Biol Hung; 2004; 55(1-4):137-41. PubMed ID: 15270227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arousal facilitates collision avoidance mediated by a looming sensitive visual neuron in a flying locust.
    Rind FC; Santer RD; Wright GA
    J Neurophysiol; 2008 Aug; 100(2):670-80. PubMed ID: 18509080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Invariance of angular threshold computation in a wide-field looming-sensitive neuron.
    Gabbiani F; Mo C; Laurent G
    J Neurosci; 2001 Jan; 21(1):314-29. PubMed ID: 11150349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Array of Descending Visual Interneurons Encoding Self-Motion in Drosophila.
    Suver MP; Huda A; Iwasaki N; Safarik S; Dickinson MH
    J Neurosci; 2016 Nov; 36(46):11768-11780. PubMed ID: 27852783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activity of descending contralateral movement detector neurons and collision avoidance behaviour in response to head-on visual stimuli in locusts.
    Gray JR; Lee JK; Robertson RM
    J Comp Physiol A; 2001 Mar; 187(2):115-29. PubMed ID: 15524000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visual motor computations in insects.
    Srinivasan MV; Zhang S
    Annu Rev Neurosci; 2004; 27():679-96. PubMed ID: 15217347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The free-flight response of Drosophila to motion of the visual environment.
    Mronz M; Lehmann FO
    J Exp Biol; 2008 Jul; 211(Pt 13):2026-45. PubMed ID: 18552291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alteration of bursting properties in interneurons during locust flight.
    Ramirez JM; Pearson KG
    J Neurophysiol; 1993 Nov; 70(5):2148-60. PubMed ID: 8294976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Responses of pigeon vestibulocerebellar neurons to optokinetic stimulation. II. The 3-dimensional reference frame of rotation neurons in the flocculus.
    Wylie DR; Frost BJ
    J Neurophysiol; 1993 Dec; 70(6):2647-59. PubMed ID: 8120604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insect behaviour: controlling flight altitude with optic flow.
    Webb B
    Curr Biol; 2007 Feb; 17(4):R124-5. PubMed ID: 17307043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Connections of the forewing tegulae in the locust flight system and their modification following partial deafferentation.
    Büschges A; Ramirez JM; Driesang R; Pearson KG
    J Neurobiol; 1992 Feb; 23(1):44-60. PubMed ID: 1373440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.