These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1784130)

  • 1. A concentration-clamp system allowing two-electrode voltage-clamp investigations in oocytes of Xenopus laevis.
    Madeja M; Musshoff U; Speckmann EJ
    J Neurosci Methods; 1991 Jul; 38(2-3):267-9. PubMed ID: 1784130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement and testing of a concentration-clamp system for oocytes of Xenopus laevis.
    Madeja M; Musshoff U; Speckmann EJ
    J Neurosci Methods; 1995 Dec; 63(1-2):211-3. PubMed ID: 8788066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small-volume and rapid extracellular solution exchange around Xenopus oocytes during voltage-clamp recordings.
    Hering S
    Pflugers Arch; 1998 Jul; 436(2):303-7. PubMed ID: 9594032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage clamping of Xenopus laevis oocytes utilizing agarose-cushion electrodes.
    Schreibmayer W; Lester HA; Dascal N
    Pflugers Arch; 1994 Mar; 426(5):453-8. PubMed ID: 7517034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-microelectrode voltage clamp of Xenopus oocytes: voltage errors and compensation for local current flow.
    Baumgartner W; Islas L; Sigworth FJ
    Biophys J; 1999 Oct; 77(4):1980-91. PubMed ID: 10512818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-electrode voltage clamp of Xenopus oocytes under high hydrostatic pressure.
    Schmalwasser H; Neef A; Elliott AA; Heinemann SH
    J Neurosci Methods; 1998 Jun; 81(1-2):1-7. PubMed ID: 9696303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transoocyte voltage clamp: a non-invasive technique for electrophysiological experiments with Xenopus laevis oocytes.
    Cucu D; Simaels J; Jans D; Van Driessche W
    Pflugers Arch; 2004 Mar; 447(6):934-42. PubMed ID: 14716490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing Channelrhodopsin Channel Properties Via Two-Electrode Voltage Clamp and Kinetic Modeling.
    Prignano L; Herchenroder L; Dempski RE
    Methods Mol Biol; 2021; 2191():49-63. PubMed ID: 32865738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A delayed rectifier potassium current in Xenopus oocytes.
    Lu L; Montrose-Rafizadeh C; Hwang TC; Guggino WB
    Biophys J; 1990 Jun; 57(6):1117-23. PubMed ID: 2393700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caffeine suppresses chloride current fluctuations in calcium-overloaded Xenopus laevis oocytes.
    Poledna J; Packová V
    Physiol Res; 1994; 43(4):253-6. PubMed ID: 7841172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glass-funnel technique for the recording of membrane currents and intracellular perfusion of Xenopus oocytes.
    Shuba YM; Naidenov VG; Morad M
    Pflugers Arch; 1996 Jul; 432(3):562-70. PubMed ID: 8766018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluctuations in Xenopus oocytes protein phosphorylation levels during two-electrode voltage clamp measurements.
    Cohen A; Zilberberg N
    J Neurosci Methods; 2006 May; 153(1):62-70. PubMed ID: 16293314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of whole-cell currents elicited by mechanical stimulation of Xenopus oocytes.
    Saitou T; Ishikawa T; Obara K; Nakayama K
    Pflugers Arch; 2000 Oct; 440(6):858-65. PubMed ID: 11041551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels.
    Methfessel C; Witzemann V; Takahashi T; Mishina M; Numa S; Sakmann B
    Pflugers Arch; 1986 Dec; 407(6):577-88. PubMed ID: 2432468
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Misawa N; Tomida M; Murakami Y; Mitsuno H; Kanzaki R
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoplasmic calcium fluctuations in calcium overloaded Xenopus laevis oocytes.
    Poledna J; Packová V
    Gen Physiol Biophys; 1995 Aug; 14(4):339-47. PubMed ID: 8720697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage clamp recordings from Xenopus oocytes.
    Dascal N
    Curr Protoc Neurosci; 2001 May; Chapter 6():Unit 6.12. PubMed ID: 18428511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of Xenopus oocytes to measure ionic selectivity of pore-forming peptides and ion channels.
    Cens T; Charnet P
    Methods Mol Biol; 2007; 403():287-302. PubMed ID: 18828001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated microsystem for non-invasive electrophysiological measurements on Xenopus oocytes.
    Dahan E; Bize V; Lehnert T; Horisberger JD; Gijs MA
    Biosens Bioelectron; 2007 Jun; 22(12):3196-202. PubMed ID: 17416513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Na-alanine cotransport in oocytes of Xenopus laevis during meiotic maturation is voltage-regulated.
    Jung D; Lafaire AV; Schwarz W
    Pflugers Arch; 1984 Sep; 402(1):39-41. PubMed ID: 6504692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.