These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 1784131)

  • 21. Evaluation of voltage-sensitive fluorescence dyes for monitoring neuronal activity in the embryonic central nervous system.
    Habib-E-Rasul Mullah S; Komuro R; Yan P; Hayashi S; Inaji M; Momose-Sato Y; Loew LM; Sato K
    J Membr Biol; 2013 Sep; 246(9):679-88. PubMed ID: 23975337
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical signals from neurons with internally applied voltage-sensitive dyes.
    Antić S; Zecević D
    J Neurosci; 1995 Feb; 15(2):1392-405. PubMed ID: 7869106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical recording with single cell resolution from monolayered slice cultures of rat hippocampus.
    Bonhoeffer T; Staiger V
    Neurosci Lett; 1988 Oct; 92(3):259-64. PubMed ID: 3200484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-photon excitation of potentiometric probes enables optical recording of action potentials from mammalian nerve terminals in situ.
    Fisher JA; Barchi JR; Welle CG; Kim GH; Kosterin P; Obaid AL; Yodh AG; Contreras D; Salzberg BM
    J Neurophysiol; 2008 Mar; 99(3):1545-53. PubMed ID: 18171710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using voltage-sensitive dye recording to image the functional development of neuronal circuits in vertebrate embryos.
    Glover JC; Sato K; Momose-Sato Y
    Dev Neurobiol; 2008 May; 68(6):804-16. PubMed ID: 18383552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recordings from human myenteric neurons using voltage-sensitive dyes.
    Vignali S; Peter N; Ceyhan G; Demir IE; Zeller F; Senseman D; Michel K; Schemann M
    J Neurosci Methods; 2010 Oct; 192(2):240-8. PubMed ID: 20691728
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A computerized system for the detection and analysis of spontaneously occurring synaptic potentials.
    Morales FR; Boxer PA; Jervey JP; Chase MH
    J Neurosci Methods; 1985 Mar; 13(1):19-35. PubMed ID: 2985881
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monitoring Population Membrane Potential Signals from Neocortex.
    Liang J; Xu W; Geng X; Wu JY
    Adv Exp Med Biol; 2015; 859():171-96. PubMed ID: 26238053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical recording of electrical activity in intact neuronal networks with random access second-harmonic generation microscopy.
    Sacconi L; Mapelli J; Gandolfi D; Lotti J; O'Connor RP; D'Angelo E; Pavone FS
    Opt Express; 2008 Sep; 16(19):14910-21. PubMed ID: 18795028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signal averaging by microcomputer using a program written in a high-level language.
    Simmons PJ
    J Neurosci Methods; 1985 Jan; 12(3):235-40. PubMed ID: 2984480
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of serum-free medium on growth and differentiation of sympathetic neurons in culture.
    Freschi JE
    Brain Res; 1982 Aug; 256(4):455-64. PubMed ID: 6289999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical detection of neuron connectivity by random access two-photon microscopy.
    Shafeghat N; Heidarinejad M; Murata N; Nakamura H; Inoue T
    J Neurosci Methods; 2016 Apr; 263():48-56. PubMed ID: 26851307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recording electrophysiological data on video tape: a superior and less costly alternative to conventional tape recorders.
    Chiang RG; Knobloch CA; Singleton DM; Steel CG; Davey KG
    J Neurosci Methods; 1985 Oct; 15(1):15-20. PubMed ID: 4058060
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Virtual leak channels modulate firing dynamics and synaptic integration in rat sympathetic neurons: implications for ganglionic transmission in vivo.
    Springer MG; Kullmann PH; Horn JP
    J Physiol; 2015 Feb; 593(4):803-23. PubMed ID: 25398531
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of voltage-sensitive dyes in living cells using two-photon excitation.
    Acker CD; Loew LM
    Methods Mol Biol; 2013; 995():147-60. PubMed ID: 23494378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Historical Overview and General Methods of Membrane Potential Imaging.
    Braubach O; Cohen LB; Choi Y
    Adv Exp Med Biol; 2015; 859():3-26. PubMed ID: 26238047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrotonic synapses are formed by fetal rat sympathetic neurons maintained in a chemically-defined culture medium.
    Higgins D; Burton H
    Neuroscience; 1982; 7(9):2241-53. PubMed ID: 6292782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescent labeling of rat auditory brainstem circuits for synaptic and electrophysiological studies.
    Maruyama A; Ohmori H
    J Neurosci Methods; 2006 Apr; 152(1-2):163-72. PubMed ID: 16246426
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imaging brain activity with voltage- and calcium-sensitive dyes.
    Baker BJ; Kosmidis EK; Vucinic D; Falk CX; Cohen LB; Djurisic M; Zecevic D
    Cell Mol Neurobiol; 2005 Mar; 25(2):245-82. PubMed ID: 16050036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring Integrated Activity of Individual Neurons Using FRET-Based Voltage-Sensitive Dyes.
    Briggman KL; Kristan WB; González JE; Kleinfeld D; Tsien RY
    Adv Exp Med Biol; 2015; 859():149-69. PubMed ID: 26238052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.