These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 17842043)

  • 1. Fast ion bombardment of ices and its astrophysical implications.
    Brown WL; Lanzerotti LJ; Johnson RE
    Science; 1982 Nov; 218(4572):525-31. PubMed ID: 17842043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ice in space: surface science investigations of the thermal desorption of model interstellar ices on dust grain analogue surfaces.
    Burke DJ; Brown WA
    Phys Chem Chem Phys; 2010 Jun; 12(23):5947-69. PubMed ID: 20520900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiolysis of astrophysical ice analogs by energetic ions: the effect of projectile mass and ice temperature.
    Pilling S; Duarte ES; Domaracka A; Rothard H; Boduch P; da Silveira EF
    Phys Chem Chem Phys; 2011 Sep; 13(35):15755-65. PubMed ID: 21647477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion irradiation of pure and amorphous CH
    Vasconcelos FA; Pilling S; Rocha WRM; Rothard H; Boduch P; Ding JJ
    Phys Chem Chem Phys; 2017 May; 19(20):12845-12856. PubMed ID: 28470319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of Hydronium Ion (H
    Martinez R; Agnihotri AN; Boduch P; Domaracka A; Fulvio D; Muniz G; Palumbo ME; Rothard H; Strazzulla G
    J Phys Chem A; 2019 Sep; 123(37):8001-8008. PubMed ID: 31436998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary ion emission induced by fission fragment impact in CO-NH(3) and CO-NH(3)-H(2)O ices: modification in the CO-NH(3) ice structure.
    Martinez R; Farenzena LS; Iza P; Ponciano CR; Homem MG; de Brito AN; Wien K; da Silveira EF
    J Mass Spectrom; 2007 Oct; 42(10):1333-41. PubMed ID: 17902107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Suprathermal Chemistry on the Evolution of Carbon Oxides and Organics within Interstellar and Cometary Ices.
    Ferrari BC; Slavicinska K; Bennett CJ
    Acc Chem Res; 2021 Mar; 54(5):1067-1079. PubMed ID: 33554606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiolysis of N
    Vasconcelos FA; Pilling S; Rocha WRM; Rothard H; Boduch P
    Phys Chem Chem Phys; 2017 Sep; 19(35):24154-24165. PubMed ID: 28837188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared complex refractive index of N-containing astrophysical ices free of water processed by cosmic-ray simulated in laboratory.
    Rocha WRM; Pilling S; Domaracka A; Rothard H; Boduch P
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117826. PubMed ID: 31784228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally induced mixing of water dominated interstellar ices.
    Burke DJ; Wolff AJ; Edridge JL; Brown WA
    Phys Chem Chem Phys; 2008 Aug; 10(32):4956-67. PubMed ID: 18688540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic chemistry by irradiation in space.
    Bibring JP; Rocard F
    Adv Space Res; 1984; 4(12):103-6. PubMed ID: 11537762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic evidence for interstellar ices in comet Hyakutake.
    Irvine WM; Bockelee-Morvan D; Lis DC; Matthews HE; Biver N; Crovisier J; Davies JK; Dent WR; Gautier D; Godfrey PD; Keene J; Lovell AJ; Owen TC; Phillips TG; Rauer H; Schloerb FP; Senay M; Young K
    Nature; 1996 Oct; 383(6599):418-20. PubMed ID: 8837771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyroelectricity of water ice.
    Wang H; Bell RC; Iedema MJ; Schenter GK; Wu K; Cowin JP
    J Phys Chem B; 2008 May; 112(20):6379-89. PubMed ID: 18426236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Reflectron Time-of-Flight Mass Spectroscopy in the Analysis of Astrophysically Relevant Ices Exposed to Ionization Radiation: Methane (CH4) and D4-Methane (CD4) as a Case Study.
    Jones BM; Kaiser RI
    J Phys Chem Lett; 2013 Jun; 4(11):1965-71. PubMed ID: 26283135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photodesorption from low-temperature water ice in interstellar and circumsolar grains.
    Westley MS; Baragiola RA; Johnson RE; Baratta GA
    Nature; 1995 Feb; 373(6513):405-7. PubMed ID: 7830792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of vapor-deposited amorphous ice and irradiated ice by molecular dynamics simulation.
    Guillot B; Guissani Y
    J Chem Phys; 2004 Mar; 120(9):4366-82. PubMed ID: 15268606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared Spectroscopic Study on Swift-Ion Irradiation of Solid N
    Bergantini A; de Barros ALF; Toribio NN; Rothard H; Boduch P; da Silveira EF
    J Phys Chem A; 2022 Mar; 126(12):2007-2017. PubMed ID: 35302766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ices on the surface of triton.
    Cruikshank DP; Roush TL; Owen TC; Geballe TR; de Bergh C; Schmitt B; Brown RH; Bartholomew MJ
    Science; 1993 Aug; 261(5122):742-5. PubMed ID: 17757211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of O2 on icy satellites by electronic excitation of low-temperature water ice.
    Sieger MT; Simpson WC; Orlando TM
    Nature; 1998 Aug; 394(6693):554-6. PubMed ID: 9707116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative electron irradiations of amorphous and crystalline astrophysical ice analogues.
    Mifsud DV; Hailey PA; Herczku P; Sulik B; Juhász Z; Kovács STS; Kaňuchová Z; Ioppolo S; McCullough RW; Paripás B; Mason NJ
    Phys Chem Chem Phys; 2022 May; 24(18):10974-10984. PubMed ID: 35466978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.