These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 1784324)

  • 1. The effects of adrenalectomy and thermal stress on glutamic acid decarboxylase activity in different regions of the rat brain.
    Maroulakou IG; Stylianopoulou F
    Neurochem Res; 1991 Dec; 16(12):1265-8. PubMed ID: 1784324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Formation of gamma-aminobutyric acid from glutamate and putrescine in rat hypothalamic and hippocampal synaptosomes and regulation of these processes by glucocorticoids].
    Mishunina TM; Kononenko VIa
    Biokhimiia; 1991 May; 56(5):846-53. PubMed ID: 1684116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in central GABAergic function following acute and repeated stress.
    Otero Losada ME
    Br J Pharmacol; 1988 Mar; 93(3):483-90. PubMed ID: 3370385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Uptake of gamma-aminobutyric acid and glutamate decarboxylase activity in synaptosomes of various regions of the brain of rats in adrenalectomy and in subsequent hydrocortisone administration].
    Mishunina TM; Kononenko VIa
    Ukr Biokhim Zh (1978); 1983; 55(6):647-51. PubMed ID: 6659082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher environmental temperature-induced change in synaptosomal acetylcholinesterase activity of brain regions.
    Mukhopadhyay S; Poddar MK
    Neurochem Res; 1990 Mar; 15(3):231-6. PubMed ID: 2366927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular distribution of glutamic acid decarboxylase in rat brain regions following electroconvulsive stimulation.
    Stelzer A; Laas R; Fleissner A
    J Neural Transm; 1985; 62(1-2):99-106. PubMed ID: 4020383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain.
    Lindefors N; Brene S; Herrera-Marschitz M; Persson H
    Exp Brain Res; 1989; 77(3):611-20. PubMed ID: 2572447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylmercury poisoning of the developing nervous system in the rat: decreased activity of glutamic acid decarboxylase in cerebral cortex and neostriatum.
    O'Kusky JR; McGeer EG
    Brain Res; 1985 Aug; 353(2):299-306. PubMed ID: 4041911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory properties of brain glutamate decarboxylase (GAD): the apoenzyme of GAD is present principally as the smaller of two molecular forms of GAD in brain.
    Martin DL; Martin SB; Wu SJ; Espina N
    J Neurosci; 1991 Sep; 11(9):2725-31. PubMed ID: 1880546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of L-glutamic acid decarboxylase in different regions of baboon brain.
    Kataoka K; Nakamura Y; Hassler R; Bak IJ; Kim JS
    Folia Psychiatr Neurol Jpn; 1975; 29(4):361-70. PubMed ID: 821834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The regional and subcellular distribution of catechol-O-methyl transferase in the rat brain.
    Broch OJ; Fonnum F
    J Neurochem; 1972 Sep; 19(9):2049-55. PubMed ID: 4403687
    [No Abstract]   [Full Text] [Related]  

  • 12. Restraint stress and adrenalectomy do not affect the level of rat cerebral enolase.
    Sanne JL; Scarna H; Grange E; Bobillier P
    Neurosci Lett; 1990 Oct; 119(1):94-6. PubMed ID: 2097590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of intermittent hypoxia and pyrimidinic nucleosides on cerebral enzymatic activities related to energy transduction.
    Dagani F; Marzatico F; Curti D; Taglietti M; Zanada F; Benzi G
    Neurochem Res; 1984 Aug; 9(8):1085-99. PubMed ID: 6493441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamic acid decarboxylase activity in discrete hypothalamic nuclei during the development of rats.
    Sternberg H; Segall PE; Bellport V; Timiras PS
    Brain Res; 1987 Aug; 431(2):316-7. PubMed ID: 3620994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain enzyme adaptation to mild normobaric intermittent hypoxia.
    Marzatico F; Curti D; Dagani F; Taglietti M; Benzi G
    J Neurosci Res; 1986; 16(2):419-28. PubMed ID: 3761387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Increase in glutamate decarboxylase activity in the synaptosomes after treatment with tetanus toxin].
    Kryzhanovskiĭ GN; Lutsenko VK; Sakharova OP; Rebrov IG; Lutsenko NG
    Biull Eksp Biol Med; 1982 Nov; 94(11):34-6. PubMed ID: 7150734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Area-dependent changes in GABAergic function after acute and chronic cold stress.
    Acosta GB; Otero Losada ME; Rubio MC
    Neurosci Lett; 1993 May; 154(1-2):175-8. PubMed ID: 8361637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamic acid decarboxylase mRNA in rat brain: regional distribution and effects of intrastriatal kainic acid.
    Kim YS; Thomas JW; Tillakaratne NJ; Montpied P; Suzdak PD; Banner C; Ginns E; Tobin AJ; Paul SM
    Brain Res; 1987 Dec; 427(1):77-82. PubMed ID: 2448011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional distribution of glutamic acid decarboxylase in the developing brain of the pyridoxine-deficient rat.
    Bayoumi RA; Smith WR
    J Neurochem; 1973 Sep; 21(3):603-13. PubMed ID: 4742140
    [No Abstract]   [Full Text] [Related]  

  • 20. [Glutamate decarboxylase activity and GABA binding in the brain synaptic membranes in rats with compensatory activation of hypothalamo-pituitary-adrenal system in stress].
    Myshunina TM; Kononenko VIa; Levchuk NI
    Ukr Biokhim Zh (1999); 2004; 76(2):43-7. PubMed ID: 15915709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.