These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 17845707)

  • 1. Quantitative analysis of surface micro-roughness alterations in human spermatozoa using atomic force microscopy.
    Kumar S; Chaudhury K; Sen P; Guha SK
    J Microsc; 2007 Aug; 227(Pt 2):118-23. PubMed ID: 17845707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological alterations in human spermatozoa associated with the polyelectrolytic effect of RISUG.
    Kumar S; Chaudhury K; Sen P; Guha SK
    Micron; 2006; 37(6):526-32. PubMed ID: 16504524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the micro-structural properties of RISUG--a newly developed male contraceptive.
    Kumar S; Roy S; Chaudhury K; Sen P; Guha SK
    J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):154-61. PubMed ID: 18161821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RISUG (reversible inhibition of sperm under guidance)--an antimicrobial as male vas deferens implant for HIV free semen.
    Guha SK
    Med Hypotheses; 2005; 65(1):61-4. PubMed ID: 15893119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical mechanism-mediated time-dependent effect on sperm of human and monkey vas implanted polyelectrolyte contraceptive.
    Guha SK
    Asian J Androl; 2007 Mar; 9(2):221-7. PubMed ID: 17334590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyelectrolyte polymer properties in relation to male contraceptive RISUG action.
    Roy S; Ghosh D; Guha SK
    Colloids Surf B Biointerfaces; 2009 Feb; 69(1):77-84. PubMed ID: 19111447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the membrane integrity of human sperm treated with a new injectable male contraceptive.
    Chaudhury K; Bhattacharyya AK; Guha SK
    Hum Reprod; 2004 Aug; 19(8):1826-30. PubMed ID: 15192063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomaterials for orthopedics: a roughness analysis by atomic force microscopy.
    Covani U; Giacomelli L; Krajewski A; Ravaglioli A; Spotorno L; Loria P; Das S; Nicolini C
    J Biomed Mater Res A; 2007 Sep; 82(3):723-30. PubMed ID: 17326227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between Enterococcus faecalis biofilms development stage and quantitative surface roughness using atomic force microscopy.
    Santos RP; Arruda TT; Carvalho CB; Carneiro VA; Braga LQ; Teixeira EH; Arruda FV; Cavada BS; Havt A; de Oliveira TM; Bezerra GA; Freire VN
    Microsc Microanal; 2008 Apr; 14(2):150-8. PubMed ID: 18312720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of atomic force microscopy to the study of natural and model soil particles.
    Cheng S; Bryant R; Doerr SH; Rhodri Williams P; Wright CJ
    J Microsc; 2008 Sep; 231(3):384-94. PubMed ID: 18754993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative suitability of DMSO and NaHCO3 for reversal of RISUG® induced long-term contraception.
    Ansari AS; Hussain M; Khan SR; Lohiya NK
    Andrology; 2016 Mar; 4(2):306-13. PubMed ID: 26748683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highlights on ultrastructural pathology of human sperm.
    Joshi NV; Cruz I; Osuna JA
    Methods Mol Biol; 2011; 736():259-84. PubMed ID: 21660733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase imaging atomic force microscopy in the characterization of biomaterials.
    Ye Z; Zhao X
    J Microsc; 2010 Apr; 238(1):27-35. PubMed ID: 20384835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The how, when, and why of the aging signals appearing on the human erythrocyte membrane: an atomic force microscopy study of surface roughness.
    Girasole M; Pompeo G; Cricenti A; Longo G; Boumis G; Bellelli A; Amiconi S
    Nanomedicine; 2010 Dec; 6(6):760-8. PubMed ID: 20603227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological, nanomechanical and cellular structural characterization of human hair and conditioner distribution using torsional resonance mode with an atomic force microscope.
    Chen N; Bhushan B
    J Microsc; 2005 Nov; 220(Pt 2):96-112. PubMed ID: 16313489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple autoclave cycles affect the surface of rotary nickel-titanium files: an atomic force microscopy study.
    Valois CR; Silva LP; Azevedo RB
    J Endod; 2008 Jul; 34(7):859-62. PubMed ID: 18570996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy analysis of enveloped and non-enveloped viral entry into, and egress from, cultured cells.
    Moloney M; McDonnell L; O'Shea H
    Ultramicroscopy; 2004 Aug; 100(3-4):163-9. PubMed ID: 15231306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning white-light interferometry as a novel technique to quantify the surface roughness of micron-sized particles for inhalation.
    Adi S; Adi H; Chan HK; Young PM; Traini D; Yang R; Yu A
    Langmuir; 2008 Oct; 24(19):11307-12. PubMed ID: 18759384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the role of the rssC gene of Serratia marcescens by atomic force microscopy.
    Sheu BC; Lin CC; Fu YH; Lee SY; Lai HC; Wu RS; Liu CH; Tsai JC; Lin S
    Microsc Microanal; 2010 Dec; 16(6):755-63. PubMed ID: 20961481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.