These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 17845723)

  • 1. Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network.
    Li WC; Cooke T; Sautois B; Soffe SR; Borisyuk R; Roberts A
    Neural Dev; 2007 Sep; 2():17. PubMed ID: 17845723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motoneurons of the axial swimming muscles in hatchling Xenopus tadpoles: features, distribution, and central synapses.
    Roberts A; Walford A; Soffe SR; Yoshida M
    J Comp Neurol; 1999 Aug; 411(3):472-86. PubMed ID: 10413780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochasticity and functionality of neural systems: mathematical modelling of axon growth in the spinal cord of tadpole.
    Borisyuk R; Cooke T; Roberts A
    Biosystems; 2008; 93(1-2):101-14. PubMed ID: 18547713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated motor activity in simulated spinal networks emerges from simple biologically plausible rules of connectivity.
    Dale N
    J Comput Neurosci; 2003; 14(1):55-70. PubMed ID: 12435924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological aspects of formation of neuronal pathways in the chick spinal cord--Golgi and electron microscopic studies.
    Kanemitsu A; Matsuda S; Kobayashi Y
    Acta Neurochir Suppl (Wien); 1987; 41():78-84. PubMed ID: 3481942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic connections of dorsal horn group II spinal interneurons: synapses formed with the interneurons and by their axon collaterals.
    Maxwell DJ; Kerr R; Jankowska E; Riddell JS
    J Comp Neurol; 1997 Mar; 380(1):51-69. PubMed ID: 9073082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axon projections of reciprocal inhibitory interneurons in the spinal cord of young Xenopus tadpoles and implications for the pattern of inhibition during swimming and struggling.
    Yoshida M; Roberts A; Soffe SR
    J Comp Neurol; 1998 Nov; 400(4):504-18. PubMed ID: 9786411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal neuronal organization and coordination in a simple vertebrate: a continuous, semi-quantitative computer model of the central pattern generator for swimming in young frog tadpoles.
    Wolf E; Soffe SR; Roberts A
    J Comput Neurosci; 2009 Oct; 27(2):291-308. PubMed ID: 19288183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Axonal projections of the cells of the dorsal ganglia in the lumbar segments of the spinal cord in tadpoles of the toad Xenopus laevis].
    Shupliakov OV
    Zh Evol Biokhim Fiziol; 1988; 24(5):715-20. PubMed ID: 3218403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining classes of spinal interneuron and their axonal projections in hatchling Xenopus laevis tadpoles.
    Li WC; Perrins R; Soffe SR; Yoshida M; Walford A; Roberts A
    J Comp Neurol; 2001 Dec; 441(3):248-65. PubMed ID: 11745648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional properties and axon terminations of interneurons in laminae III-V of the mammalian spinal dorsal horn in vitro.
    Schneider SP
    J Neurophysiol; 1992 Nov; 68(5):1746-59. PubMed ID: 1282540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Commissural propriospinal connections between the lateral aspects of laminae III-IV in the lumbar spinal cord of rats.
    Petkó M; Veress G; Vereb G; Storm-Mathisen J; Antal M
    J Comp Neurol; 2004 Dec; 480(4):364-77. PubMed ID: 15558798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling spinal locomotor circuits for movements in developing zebrafish.
    Roussel Y; Gaudreau SF; Kacer ER; Sengupta M; Bui TV
    Elife; 2021 Sep; 10():. PubMed ID: 34473059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topological and modality-specific representation of somatosensory information in the fly brain.
    Tsubouchi A; Yano T; Yokoyama TK; Murtin C; Otsuna H; Ito K
    Science; 2017 Nov; 358(6363):615-623. PubMed ID: 29097543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shared versus specialized glycinergic spinal interneurons in axial motor circuits of larval zebrafish.
    Liao JC; Fetcho JR
    J Neurosci; 2008 Nov; 28(48):12982-92. PubMed ID: 19036991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studying the role of axon fasciculation during development in a computational model of the Xenopus tadpole spinal cord.
    Davis O; Merrison-Hort R; Soffe SR; Borisyuk R
    Sci Rep; 2017 Oct; 7(1):13551. PubMed ID: 29051550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity of identified central synapses in the embryonic cockroach: appropriate connections form before the onset of spontaneous afferent activity.
    Blagburn JM; Sosa MA; Blanco RE
    J Comp Neurol; 1996 Sep; 373(4):511-28. PubMed ID: 8889942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axonal regeneration and development of de novo axons from distal dendrites of adult feline commissural interneurons after a proximal axotomy.
    Fenrich KK; Skelton N; MacDermid VE; Meehan CF; Armstrong S; Neuber-Hess MS; Rose PK
    J Comp Neurol; 2007 Jun; 502(6):1079-97. PubMed ID: 17447249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles.
    Li WC; Roberts A; Soffe SR
    J Physiol; 2009 Apr; 587(Pt 8):1677-93. PubMed ID: 19221124
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 19.