These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 17845847)

  • 1. Fluorinated chloramphenicol acetyltransferase thermostability and activity profile: improved thermostability by a single-isoleucine mutant.
    Voloshchuk N; Lee MX; Zhu WW; Tanrikulu IC; Montclare JK
    Bioorg Med Chem Lett; 2007 Nov; 17(21):5907-11. PubMed ID: 17845847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of global fluorination on chloramphenicol acetyltransferase activity and stability.
    Panchenko T; Zhu WW; Montclare JK
    Biotechnol Bioeng; 2006 Aug; 94(5):921-30. PubMed ID: 16548001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoadaptation-directed evolution of chloramphenicol acetyltransferase in an error-prone thermophile using improved procedures.
    Kobayashi J; Furukawa M; Ohshiro T; Suzuki H
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5563-72. PubMed ID: 25783628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in the chloramphenicol acetyltransferase (S61G, Y105C) increase accumulated amounts and resistance in Pseudomonas aeruginosa.
    Wang J; Liu JH
    FEMS Microbiol Lett; 2004 Jul; 236(2):197-204. PubMed ID: 15251197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of a conserved hydrophobic pocket important for the thermostability of Bacillus pumilus chloramphenicol acetyltransferase (CAT-86).
    Chirakkal H; Ford GC; Moir A
    Protein Eng; 2001 Mar; 14(3):161-6. PubMed ID: 11342712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurement of CAT activity by incubation of CAT-expressing cells in medium containing chloramphenicol.
    Alter DC; Subramanian KN
    Biotechniques; 1988 Jun; 6(6):526-30. PubMed ID: 3273185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cumulative improvements of thermostability and pH-activity profile of Aspergillus niger PhyA phytase by site-directed mutagenesis.
    Zhang W; Lei XG
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1033-40. PubMed ID: 17968540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolving proteins of novel composition.
    Montclare JK; Tirrell DA
    Angew Chem Int Ed Engl; 2006 Jul; 45(27):4518-21. PubMed ID: 16763955
    [No Abstract]   [Full Text] [Related]  

  • 9. Insertional re-activation of a chloramphenicol acetyltransferase misfolding mutant protein.
    Robben J; Van der Schueren J; Verhasselt P; Aert R; Volckaert G
    Protein Eng; 1995 Feb; 8(2):159-65. PubMed ID: 7630887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Paenibacillus sp. dextranase mutant pool with improved thermostability and activity.
    Hild E; Brumbley SM; O'Shea MG; Nevalainen H; Bergquist PL
    Appl Microbiol Biotechnol; 2007 Jul; 75(5):1071-8. PubMed ID: 17426967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the aspartic acid-199----asparagine mutant of chloramphenicol acetyltransferase to 2.35-A resolution: structural consequences of disruption of a buried salt bridge.
    Gibbs MR; Moody PC; Leslie AG
    Biochemistry; 1990 Dec; 29(51):11261-5. PubMed ID: 2271709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloramphenicol acetyltransferase.
    Shaw WV; Leslie AG
    Annu Rev Biophys Biophys Chem; 1991; 20():363-86. PubMed ID: 1867721
    [No Abstract]   [Full Text] [Related]  

  • 13. Use of a fluorescent chloramphenicol derivative as a substrate for CAT assays.
    Hruby DE; Brinkley JM; Kang HC; Haugland RP; Young SL; Melner MH
    Biotechniques; 1990 Feb; 8(2):170-1. PubMed ID: 2317370
    [No Abstract]   [Full Text] [Related]  

  • 14. Misfolding of chloramphenicol acetyltransferase due to carboxy-terminal truncation can be corrected by second-site mutations.
    Van der Schueren J; Robben J; Volckaert G
    Protein Eng; 1998 Dec; 11(12):1211-7. PubMed ID: 9930670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative aspects of the use of bacterial chloramphenicol acetyltransferase as a reporter system in the yeast Saccharomyces cerevisiae.
    Alipour H; Eriksson P; Norbeck J; Blomberg A
    Anal Biochem; 1999 May; 270(1):153-8. PubMed ID: 10328777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering thermal stability of L-asparaginase by in vitro directed evolution.
    Kotzia GA; Labrou NE
    FEBS J; 2009 Mar; 276(6):1750-61. PubMed ID: 19220855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal instability of chloramphenicol acetyltransferase: assay revisions required.
    Mandel HG
    Anal Biochem; 1995 Sep; 230(1):191-3. PubMed ID: 8585622
    [No Abstract]   [Full Text] [Related]  

  • 18. Assembly of mutations for improving thermostability of Escherichia coli AppA2 phytase.
    Kim MS; Weaver JD; Lei XG
    Appl Microbiol Biotechnol; 2008 Jul; 79(5):751-8. PubMed ID: 18443782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of chloramphenicol acetyltransferase B2 encoded by the multiresistance transposon Tn2424.
    Qiu W; Shi R; Lu ML; Zhou M; Roy PH; Lapointe J; Lin SX
    Proteins; 2004 Dec; 57(4):858-61. PubMed ID: 15390264
    [No Abstract]   [Full Text] [Related]  

  • 20. Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface.
    Han ZL; Han SY; Zheng SP; Lin Y
    Appl Microbiol Biotechnol; 2009 Nov; 85(1):117-26. PubMed ID: 19533118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.