These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17845911)

  • 1. The peri-electrode space is a significant element of the electrode-brain interface in deep brain stimulation: a computational study.
    Yousif N; Bayford R; Bain PG; Liu X
    Brain Res Bull; 2007 Oct; 74(5):361-8. PubMed ID: 17845911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the effects of the electrode-brain interface on the crossing electric currents in deep brain recording and stimulation.
    Yousif N; Bayford R; Wang S; Liu X
    Neuroscience; 2008 Mar; 152(3):683-91. PubMed ID: 18304747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the depth electrode-brain interface in deep brain stimulation using finite element models with graded complexity in structure and solution.
    Yousif N; Liu X
    J Neurosci Methods; 2009 Oct; 184(1):142-51. PubMed ID: 19596028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of reactivity of the electrode-brain interface on the crossing electric current in therapeutic deep brain stimulation.
    Yousif N; Bayford R; Liu X
    Neuroscience; 2008 Oct; 156(3):597-606. PubMed ID: 18761058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources and effects of electrode impedance during deep brain stimulation.
    Butson CR; Maks CB; McIntyre CC
    Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Field Shaping for Deep Brain Stimulation With Thousands of Contacts in a Novel Electrode Geometry.
    Willsie AC; Dorval AD
    Neuromodulation; 2015 Oct; 18(7):542-50; discussion 550-1. PubMed ID: 26245306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The physiologically modulated electrode potentials at the depth electrode-brain interface in humans.
    Xie K; Wang S; Aziz TZ; Stein JF; Liu X
    Neurosci Lett; 2006 Jul; 402(3):238-43. PubMed ID: 16697525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of interpolation error, electrode geometry, and the electrode-tissue interface on models of electric fields produced by deep brain stimulation.
    Howell B; Naik S; Grill WM
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):297-307. PubMed ID: 24448594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the current distribution across the depth electrode-brain interface in deep brain stimulation.
    Yousif N; Liu X
    Expert Rev Med Devices; 2007 Sep; 4(5):623-31. PubMed ID: 17850197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode.
    Zhang TC; Grill WM
    J Neural Eng; 2010 Dec; 7(6):066009. PubMed ID: 21084730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo impedance spectroscopy of deep brain stimulation electrodes.
    Lempka SF; Miocinovic S; Johnson MD; Vitek JL; McIntyre CC
    J Neural Eng; 2009 Aug; 6(4):046001. PubMed ID: 19494421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation-induced changes at the electrode-tissue interface and their influence on deep brain stimulation.
    Evers J; Sridhar K; Liegey J; Brady J; Jahns H; Lowery M
    J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35728575
    [No Abstract]   [Full Text] [Related]  

  • 14. Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations.
    Horn A; Kühn AA
    Neuroimage; 2015 Feb; 107():127-135. PubMed ID: 25498389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation.
    Walckiers G; Fuchs B; Thiran JP; Mosig JR; Pollo C
    J Neurosci Methods; 2010 Jan; 186(1):90-6. PubMed ID: 19895845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical analysis of the local field potential in deep brain stimulation applications.
    Lempka SF; McIntyre CC
    PLoS One; 2013; 8(3):e59839. PubMed ID: 23555799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the field distribution in deep brain stimulation: the influence of anisotropy of brain tissue.
    Schmidt C; van Rienen U
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1583-92. PubMed ID: 22410323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method for patient-specific finite element modeling and simulation of deep brain stimulation.
    Aström M; Zrinzo LU; Tisch S; Tripoliti E; Hariz MI; Wårdell K
    Med Biol Eng Comput; 2009 Jan; 47(1):21-8. PubMed ID: 18936999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation.
    Miocinovic S; Lempka SF; Russo GS; Maks CB; Butson CR; Sakaie KE; Vitek JL; McIntyre CC
    Exp Neurol; 2009 Mar; 216(1):166-76. PubMed ID: 19118551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation in deep brain stimulation electrode impedance over years following electrode implantation.
    Satzer D; Lanctin D; Eberly LE; Abosch A
    Stereotact Funct Neurosurg; 2014; 92(2):94-102. PubMed ID: 24503709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.