BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 17846156)

  • 1. Neural correlates of inflexible behavior in the orbitofrontal-amygdalar circuit after cocaine exposure.
    Stalnaker TA; Roesch MR; Calu DJ; Burke KA; Singh T; Schoenbaum G
    Ann N Y Acad Sci; 2007 Dec; 1121():598-609. PubMed ID: 17846156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal associative encoding in orbitofrontal neurons in cocaine-experienced rats during decision-making.
    Stalnaker TA; Roesch MR; Franz TM; Burke KA; Schoenbaum G
    Eur J Neurosci; 2006 Nov; 24(9):2643-53. PubMed ID: 17100852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cocaine-induced decision-making deficits are mediated by miscoding in basolateral amygdala.
    Stalnaker TA; Roesch MR; Franz TM; Calu DJ; Singh T; Schoenbaum G
    Nat Neurosci; 2007 Aug; 10(8):949-51. PubMed ID: 17603478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basolateral amygdala lesions abolish orbitofrontal-dependent reversal impairments.
    Stalnaker TA; Franz TM; Singh T; Schoenbaum G
    Neuron; 2007 Apr; 54(1):51-8. PubMed ID: 17408577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural substrates of cognitive inflexibility after chronic cocaine exposure.
    Stalnaker TA; Takahashi Y; Roesch MR; Schoenbaum G
    Neuropharmacology; 2009; 56 Suppl 1(Suppl 1):63-72. PubMed ID: 18692512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning.
    Schoenbaum G; Chiba AA; Gallagher M
    J Neurosci; 1999 Mar; 19(5):1876-84. PubMed ID: 10024371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine D1 or D2 receptor antagonism within the basolateral amygdala differentially alters the acquisition of cocaine-cue associations necessary for cue-induced reinstatement of cocaine-seeking.
    Berglind WJ; Case JM; Parker MP; Fuchs RA; See RE
    Neuroscience; 2006; 137(2):699-706. PubMed ID: 16289883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconciling the roles of orbitofrontal cortex in reversal learning and the encoding of outcome expectancies.
    Schoenbaum G; Saddoris MP; Stalnaker TA
    Ann N Y Acad Sci; 2007 Dec; 1121():320-35. PubMed ID: 17698988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex.
    Saddoris MP; Gallagher M; Schoenbaum G
    Neuron; 2005 Apr; 46(2):321-31. PubMed ID: 15848809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cocaine makes actions insensitive to outcomes but not extinction: implications for altered orbitofrontal-amygdalar function.
    Schoenbaum G; Setlow B
    Cereb Cortex; 2005 Aug; 15(8):1162-9. PubMed ID: 15563719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cocaine-conditioned place preference is predicted by previous anxiety-like behavior and is related to an increased number of neurons in the basolateral amygdala.
    Ladrón de Guevara-Miranda D; Pavón FJ; Serrano A; Rivera P; Estivill-Torrús G; Suárez J; Rodríguez de Fonseca F; Santín LJ; Castilla-Ortega E
    Behav Brain Res; 2016 Feb; 298(Pt B):35-43. PubMed ID: 26523857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeltaFosB induction in orbitofrontal cortex mediates tolerance to cocaine-induced cognitive dysfunction.
    Winstanley CA; LaPlant Q; Theobald DE; Green TA; Bachtell RK; Perrotti LI; DiLeone RJ; Russo SJ; Garth WJ; Self DW; Nestler EJ
    J Neurosci; 2007 Sep; 27(39):10497-507. PubMed ID: 17898221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of orbitofrontal cortex lesions on cocaine self-administration.
    Grakalic I; Panlilio LV; Quiroz C; Schindler CW
    Neuroscience; 2010 Jan; 165(2):313-24. PubMed ID: 19879927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prior Cocaine Use Alters the Normal Evolution of Information Coding in Striatal Ensembles during Value-Guided Decision-Making.
    Mueller LE; Sharpe MJ; Stalnaker TA; Wikenheiser AM; Schoenbaum G
    J Neurosci; 2021 Jan; 41(2):342-353. PubMed ID: 33219006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An orbitofrontal cortex-anterior insular cortex circuit gates compulsive cocaine use.
    Chen Y; Wang G; Zhang W; Han Y; Zhang L; Xu H; Meng S; Lu L; Xue Y; Shi J
    Sci Adv; 2022 Dec; 8(51):eabq5745. PubMed ID: 36563158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The orbitofrontal cortex, impulsivity, and addiction: probing orbitofrontal dysfunction at the neural, neurochemical, and molecular level.
    Winstanley CA
    Ann N Y Acad Sci; 2007 Dec; 1121():639-55. PubMed ID: 17846162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Neural Mechanism of Cue-Outcome Expectancy Generated by the Interaction Between Orbitofrontal Cortex and Amygdala.
    Takei K; Fujita K; Kashimori Y
    Chem Senses; 2020 Jan; 45(1):15-26. PubMed ID: 31599930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatomy and pharmacology of cocaine priming-induced reinstatement of drug seeking.
    Schmidt HD; Anderson SM; Famous KR; Kumaresan V; Pierce RC
    Eur J Pharmacol; 2005 Dec; 526(1-3):65-76. PubMed ID: 16321382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Withdrawal from cocaine self-administration produces long-lasting deficits in orbitofrontal-dependent reversal learning in rats.
    Calu DJ; Stalnaker TA; Franz TM; Singh T; Shaham Y; Schoenbaum G
    Learn Mem; 2007 May; 14(5):325-8. PubMed ID: 17522022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulus-response functions of the lateral dorsal striatum and regulation of behavior studied in a cocaine maintenance/cue reinstatement model in rats.
    Kantak KM; Black Y; Valencia E; Green-Jordan K; Eichenbaum HB
    Psychopharmacology (Berl); 2002 May; 161(3):278-87. PubMed ID: 12021831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.