BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 17846156)

  • 21. Medial orbitofrontal cortex gray matter is reduced in abstinent substance-dependent individuals.
    Tanabe J; Tregellas JR; Dalwani M; Thompson L; Owens E; Crowley T; Banich M
    Biol Psychiatry; 2009 Jan; 65(2):160-4. PubMed ID: 18801475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Orbitofrontal cortex and cognitive-motivational impairments in psychostimulant addiction: evidence from experiments in the non-human primate.
    Olausson P; Jentsch JD; Krueger DD; Tronson NC; Nairn AC; Taylor JR
    Ann N Y Acad Sci; 2007 Dec; 1121():610-38. PubMed ID: 17698993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural encoding in the orbitofrontal cortex related to goal-directed behavior.
    Furuyashiki T; Gallagher M
    Ann N Y Acad Sci; 2007 Dec; 1121():193-215. PubMed ID: 17872389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Action-Outcome Expectancies Require Orbitofrontal Neurotrophin Systems in Naïve and Cocaine-Exposed Mice.
    Pitts EG; Barfield ET; Woon EP; Gourley SL
    Neurotherapeutics; 2020 Jan; 17(1):165-177. PubMed ID: 31218603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cocaine pre-exposure produces a sensitized and context-specific c-fos mRNA response to footshock stress in the central nucleus of the AMYGDALA.
    Erb S; Lopak V; Smith C
    Neuroscience; 2004; 129(3):719-25. PubMed ID: 15541892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orbitofrontal and insular cortex: neural responses to cocaine-associated cues and cocaine self-administration.
    Guillem K; Kravitz AV; Moorman DE; Peoples LL
    Synapse; 2010 Jan; 64(1):1-13. PubMed ID: 19725114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction.
    Hu Y; Salmeron BJ; Gu H; Stein EA; Yang Y
    JAMA Psychiatry; 2015 Jun; 72(6):584-92. PubMed ID: 25853901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals.
    Schoenbaum G; Setlow B; Nugent SL; Saddoris MP; Gallagher M
    Learn Mem; 2003; 10(2):129-40. PubMed ID: 12663751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potentiated reinstatement of cocaine-seeking behavior following D-amphetamine infusion into the basolateral amygdala.
    Ledford CC; Fuchs RA; See RE
    Neuropsychopharmacology; 2003 Oct; 28(10):1721-9. PubMed ID: 12865896
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stimulant-induced adaptations in neostriatal matrix and striosome systems: transiting from instrumental responding to habitual behavior in drug addiction.
    Canales JJ
    Neurobiol Learn Mem; 2005 Mar; 83(2):93-103. PubMed ID: 15721792
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cocaine-induced impulsive choices are accompanied by impaired delay-dependent anticipatory activity in basolateral amygdala.
    Zuo Y; Wang X; Cui C; Luo F; Yu P; Wang X
    J Cogn Neurosci; 2012 Jan; 24(1):196-211. PubMed ID: 21916564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Features of compulsive checking behavior mediated by nucleus accumbens and orbital frontal cortex.
    Dvorkin A; Silva C; McMurran T; Bisnaire L; Foster J; Szechtman H
    Eur J Neurosci; 2010 Nov; 32(9):1552-63. PubMed ID: 20731708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural correlates of high and craving during cocaine self-administration using BOLD fMRI.
    Risinger RC; Salmeron BJ; Ross TJ; Amen SL; Sanfilipo M; Hoffmann RG; Bloom AS; Garavan H; Stein EA
    Neuroimage; 2005 Jul; 26(4):1097-108. PubMed ID: 15886020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accumbal neurons that are activated during cocaine self-administration are spared from inhibitory effects of repeated cocaine self-administration.
    Peoples LL; Kravitz AV; Lynch KG; Cavanaugh DJ
    Neuropsychopharmacology; 2007 May; 32(5):1141-58. PubMed ID: 17019407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Renewal of extinguished cocaine-seeking.
    Hamlin AS; Clemens KJ; McNally GP
    Neuroscience; 2008 Feb; 151(3):659-70. PubMed ID: 18164822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A molecularly defined orbitofrontal cortical neuron population controls compulsive-like behavior, but not inflexible choice or habit.
    Yount ST; Wang S; Allen AT; Shapiro LP; Butkovich LM; Gourley SL
    Prog Neurobiol; 2024 Jul; 238():102632. PubMed ID: 38821345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A neurocomputational model for cocaine addiction.
    Dezfouli A; Piray P; Keramati MM; Ekhtiari H; Lucas C; Mokri A
    Neural Comput; 2009 Oct; 21(10):2869-93. PubMed ID: 19635010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time-dependent changes in cocaine-seeking behavior and extracellular dopamine levels in the amygdala during cocaine withdrawal.
    Tran-Nguyen LT; Fuchs RA; Coffey GP; Baker DA; O'Dell LE; Neisewander JL
    Neuropsychopharmacology; 1998 Jul; 19(1):48-59. PubMed ID: 9608576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cue-induced conditioned activity does not incubate but is mediated by the basolateral amygdala.
    Diehl GW; Wachtel JM; Paine TA
    Pharmacol Biochem Behav; 2013 Mar; 104():69-79. PubMed ID: 23333156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of the nucleus accumbens and medial prefrontal cortex in the expression of conditioned hyperactivity to a cocaine-associated environment in rats.
    Franklin TR; Druhan JP
    Neuropsychopharmacology; 2000 Dec; 23(6):633-44. PubMed ID: 11063919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.