These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17846156)

  • 41. Cell Adhesion Factors in the Orbitofrontal Cortex Control Cue-Induced Reinstatement of Cocaine Seeking and Amygdala-Dependent Goal Seeking.
    Whyte AJ; Trinoskey-Rice G; Davies RA; Woon EP; Foster SL; Shapiro LP; Li DC; Srikanth KD; Gil-Henn H; Gourley SL
    J Neurosci; 2021 Jul; 41(27):5923-5936. PubMed ID: 34074735
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The orbital prefrontal cortex and drug addiction in laboratory animals and humans.
    Everitt BJ; Hutcheson DM; Ersche KD; Pelloux Y; Dalley JW; Robbins TW
    Ann N Y Acad Sci; 2007 Dec; 1121():576-97. PubMed ID: 17846151
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex.
    Volkow ND; Fowler JS
    Cereb Cortex; 2000 Mar; 10(3):318-25. PubMed ID: 10731226
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The impact of orbitofrontal dysfunction on cocaine addiction.
    Lucantonio F; Stalnaker TA; Shaham Y; Niv Y; Schoenbaum G
    Nat Neurosci; 2012 Jan; 15(3):358-66. PubMed ID: 22267164
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A disinhibitory microcircuit of the orbitofrontal cortex mediates cocaine preference in mice.
    Huang Z; Wei X; Tian J; Fu Y; Dong J; Wang Y; Shi J; Lu L; Zhang W
    Mol Psychiatry; 2024 May; ():. PubMed ID: 38698268
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Encoding changes in orbitofrontal cortex in reversal-impaired aged rats.
    Schoenbaum G; Setlow B; Saddoris MP; Gallagher M
    J Neurophysiol; 2006 Mar; 95(3):1509-17. PubMed ID: 16338994
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prolonged abstinence from cocaine or morphine disrupts separable valuations during decision conflict.
    Sweis BM; Redish AD; Thomas MJ
    Nat Commun; 2018 Jun; 9(1):2521. PubMed ID: 29955073
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Overlapping decline in orbitofrontal gray matter volume related to cocaine use and body mass index.
    Smith DG; Jones PS; Williams GB; Bullmore ET; Robbins TW; Ersche KD
    Addict Biol; 2015 Jan; 20(1):194-6. PubMed ID: 23927455
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transition from 'model-based' to 'model-free' behavioral control in addiction: Involvement of the orbitofrontal cortex and dorsolateral striatum.
    Lucantonio F; Caprioli D; Schoenbaum G
    Neuropharmacology; 2014 Jan; 76 Pt B(0 0):407-15. PubMed ID: 23752095
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anatomic and behavioral aspects of frontal-subcortical circuits.
    Cummings JL
    Ann N Y Acad Sci; 1995 Dec; 769():1-13. PubMed ID: 8595019
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of orbitofrontal cortex in drug addiction: a review of preclinical studies.
    Schoenbaum G; Shaham Y
    Biol Psychiatry; 2008 Feb; 63(3):256-62. PubMed ID: 17719014
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cocaine disrupts action flexibility via glucocorticoid receptors.
    Sequeira MK; Stachowicz KM; Seo EH; Yount ST; Gourley SL
    iScience; 2024 Jul; 27(7):110148. PubMed ID: 38989467
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the optimality of coarse behavior rules.
    Bookstaber R; Langsam J
    J Theor Biol; 1985 Sep; 116(2):161-93. PubMed ID: 4058019
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of peptides on animal and human behavior: a review of studies published in the first twenty years of the journal Peptides.
    McLay RN; Pan W; Kastin AJ
    Peptides; 2001 Dec; 22(12):2181-255. PubMed ID: 11786208
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neural substrates of cognitive inflexibility after chronic cocaine exposure.
    Stalnaker TA; Takahashi Y; Roesch MR; Schoenbaum G
    Neuropharmacology; 2009; 56 Suppl 1(Suppl 1):63-72. PubMed ID: 18692512
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prior Cocaine Use Alters the Normal Evolution of Information Coding in Striatal Ensembles during Value-Guided Decision-Making.
    Mueller LE; Sharpe MJ; Stalnaker TA; Wikenheiser AM; Schoenbaum G
    J Neurosci; 2021 Jan; 41(2):342-353. PubMed ID: 33219006
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dissociable Contributions of Basolateral Amygdala and Ventrolateral Orbitofrontal Cortex to Flexible Learning Under Uncertainty.
    Aguirre CG; Woo JH; Romero-Sosa JL; Rivera ZM; Tejada AN; Munier JJ; Perez J; Goldfarb M; Das K; Gomez M; Ye T; Pannu J; Evans K; O'Neill PR; Spigelman I; Soltani A; Izquierdo A
    J Neurosci; 2024 Jan; 44(2):. PubMed ID: 37968116
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Distinct cortico-striatal compartments drive competition between adaptive and automatized behavior.
    Barnett WH; Kuznetsov A; Lapish CC
    PLoS One; 2023; 18(3):e0279841. PubMed ID: 36943842
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chronic cocaine causes age-dependent increases in risky choice in both males and females.
    Blaes SL; Shimp KG; Betzhold SM; Setlow B; Orsini CA
    Behav Neurosci; 2022 Jun; 136(3):243-263. PubMed ID: 35298207
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prior cocaine self-administration impairs attention signals in anterior cingulate cortex.
    Vázquez D; Pribut HJ; Burton AC; Tennyson SS; Roesch MR
    Neuropsychopharmacology; 2020 Apr; 45(5):833-841. PubMed ID: 31775158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.