BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 17846486)

  • 1. Halothane modifies oxygen free radical activity on the voltage-sensitive calcium channels in canine myocardial membranes.
    Drenger B; Gozal Y; Ginosar Y; Tochner Z; Chevion M
    Ann Card Anaesth; 1999 Jul; 2(2):16-21. PubMed ID: 17846486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Halothane modifies ischemia-associated injury to the voltage-sensitive calcium channels in canine heart sarcolemma.
    Drenger B; Ginosar Y; Chandra M; Reches A; Gozal Y
    Anesthesiology; 1994 Jul; 81(1):221-8. PubMed ID: 8042789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of halothane on voltage-dependent calcium channels in isolated Langendorff-perfused rat heart.
    Lee DL; Zhang J; Blanck TJ
    Anesthesiology; 1994 Nov; 81(5):1212-9. PubMed ID: 7978480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equal changes in L-type calcium channel density after 60 min of ischaemia in normal and ischaemically preconditioned porcine myocardium.
    Stokke M; Kirkebøen KA; Naess PA; Hagelin EM; Ilebekk A; Brørs O
    Acta Physiol Scand; 1996 Jun; 157(2):147-55. PubMed ID: 8800354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+ channel modulation alters halothane-induced depression of ventricular myocytes.
    Kanaya N; Matsumoto M; Kawana S; Tsuchida H; Kimura H; Miyamoto A; Ohshika H; Namiki A
    Can J Anaesth; 1998 Jun; 45(6):584-91. PubMed ID: 9669017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Halothane depresses D600 binding to bovine heart sarcolemma.
    Hoehner PJ; Quigg MC; Blanck TJ
    Anesthesiology; 1991 Dec; 75(6):1019-24. PubMed ID: 1741494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the effects of xenon and halothane on voltage-dependent Ca(2+) fluxes in rabbit T-tubule membranes.
    Oz M; Dinc M; Tchugunova Y; Dunn SM
    Naunyn Schmiedebergs Arch Pharmacol; 2002 May; 365(5):413-7. PubMed ID: 12012028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of oxygen free radicals on calcium permeability and calcium loading at steady state in cardiac sarcoplasmic reticulum.
    Okabe E; Odajima C; Taga R; Kukreja RC; Hess ML; Ito H
    Mol Pharmacol; 1988 Sep; 34(3):388-94. PubMed ID: 2843752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density of L-type calcium channels in ischaemically preconditioned porcine heart regions.
    Stokke M; Aksnes G; Lande K; Hagelin EM; Brørs O
    Acta Physiol Scand; 1994 Apr; 150(4):425-30. PubMed ID: 8036910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of pyrethroids on voltage-sensitive calcium channels: a critical evaluation of strengths, weaknesses, data needs, and relationship to assessment of cumulative neurotoxicity.
    Shafer TJ; Meyer DA
    Toxicol Appl Pharmacol; 2004 Apr; 196(2):303-18. PubMed ID: 15081275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular calcium pools of ischaemic and reperfused myocardium characterised by electron probe.
    Miller TW; Tormey JM
    Cardiovasc Res; 1995 Jan; 29(1):85-94. PubMed ID: 7895244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dihydropyridine binding and calcium channel function in clonal rat adrenal medullary tumor cells.
    Kunze DL; Hamilton SL; Hawkes MJ; Brown AM
    Mol Pharmacol; 1987 Apr; 31(4):401-9. PubMed ID: 2437436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of halothane on sarcolemmal calcium channels during myocardial ischemia and reperfusion.
    Drenger B; Ginosar Y; Gozal Y
    Adv Pharmacol; 1994; 31():89-97. PubMed ID: 7873445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium channel agonist and antagonist binding in a highly enriched sarcolemma preparation obtained from canine ventricle.
    Rampe D; Poder T; Zhao ZY; Schilling WP
    J Cardiovasc Pharmacol; 1989 Apr; 13(4):547-56. PubMed ID: 2470991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of voltage-dependent calcium channels in canine brain during global ischemia and reperfusion.
    Hoehner PJ; Blanck TJ; Roy R; Rosenthal RE; Fiskum G
    J Cereb Blood Flow Metab; 1992 May; 12(3):418-24. PubMed ID: 1314842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of oxygen free radicals and scavengers on the cardiac extracellular collagen matrix during ischemia-reperfusion.
    Lonn E; Factor SM; Van Hoeven KH; Wen WH; Zhao M; Dawood F; Liu P
    Can J Cardiol; 1994 Mar; 10(2):203-13. PubMed ID: 8143221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Demonstration of secondary free radicals and the role of calpain in functional changes associated with the myocardial ischemia-reperfusion sequence].
    Perrin C; Vergely C; Zeller M; Maupoil V; Rochette L
    Arch Mal Coeur Vaiss; 2000 Aug; 93(8):931-6. PubMed ID: 10989732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of ryanodine on oxygen free radical-induced dysfunction of cardiac sarcoplasmic reticulum.
    Okabe E; Kuse K; Sekishita T; Suyama N; Tanaka K; Ito H
    J Pharmacol Exp Ther; 1991 Mar; 256(3):868-75. PubMed ID: 1848630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic disarrangement in ischemic heart disease and its therapeutic control.
    Ferrari R
    Rev Port Cardiol; 1998 Sep; 17(9):667-84. PubMed ID: 9834638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.