These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17846714)

  • 1. Development of a miniature motor-driven pulsatile LVAD driven by a fuzzy controller.
    Okamoto E; Makino T; Tanaka S; Yasuda T; Akasaka Y; Tani M; Inoue Y; Mitoh A; Mitamura Y
    J Artif Organs; 2007; 10(3):158-64. PubMed ID: 17846714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a miniature implantable left ventricular assist device using CAD/CAM technology.
    Okamoto E; Hashimoto T; Mitamura Y
    J Artif Organs; 2003; 6(3):162-7. PubMed ID: 14598098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of left ventricular assist device on cardiac function: experimental study of relationship between pump flow and left ventricular diastolic function.
    Saito A; Shiono M; Orime Y; Yagi S; Nakata KI; Eda K; Hattori T; Funahashi M; Taniguchi Y; Negishi N; Sezai Y
    Artif Organs; 2001 Sep; 25(9):728-32. PubMed ID: 11722351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamic controller for left ventricular assist device based on pulsatility ratio.
    Choi S; Boston JR; Antaki JF
    Artif Organs; 2007 Feb; 31(2):114-25. PubMed ID: 17298400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pitfalls in the development of a rotary blood pump controller.
    Konishi H; Misawa Y; Fuse K; Sohara Y
    ASAIO J; 2001; 47(4):397-400. PubMed ID: 11482493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a compact, highly efficient, totally implantable motor-driven assist pump system.
    Okamoto E; Tomoda K; Yamamoto K; Mitamura Y; Mikami T
    Artif Organs; 1994 Dec; 18(12):911-7. PubMed ID: 7887828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemodynamics of a pulsatile left ventricular assist device driven by a counterpulsation pump in a mock circulation.
    Khir AW; Swalen MJ; Segers P; Verdonck P; Pepper JR
    Artif Organs; 2006 Apr; 30(4):308-12. PubMed ID: 16643389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The implantable fuzzy controlled Helmholtz-left ventricular assist device: first in vitro testing.
    Kaufmann R; Nix C; Klein M; Reul H; Rau G
    Artif Organs; 1997 Feb; 21(2):131-7. PubMed ID: 9028495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of an implantable motor-driven left ventricular assist device.
    Kikugawa D; Murakami T; Endo K; Fujiwara T; Takatani S
    Artif Organs; 1999 Mar; 23(3):249-52. PubMed ID: 10198716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Newly developed ventricular assist device with linear oscillatory actuator.
    Fukunaga K; Funakubo A; Fukui Y
    ASAIO J; 2003; 49(3):333-9. PubMed ID: 12790386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo testing of an implantable motor-driven left ventricular assist device.
    Murakami T; Kikugawa D; Fukuhiro Y; Kanazawa S; Fujiwara T; Katsumura T; Kukunaga S; Matsuura Y
    Artif Organs; 1996 Feb; 20(2):152-5. PubMed ID: 8712961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research on the control arithmetic for blood pump based on ventricular work].
    Xu X; Tan J; Gong Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1089-92. PubMed ID: 18027703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Load-independent analysis of a pulsatile right ventricular assist device.
    Meyers CH; Peterseim DS; Uppal R; Jayawant AM; Campbell KA; Sabiston DC; Smith PK; Van Trigt P
    J Heart Lung Transplant; 1995; 14(1 Pt 1):177-85. PubMed ID: 7727467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and control of the atrio-aortic left ventricular assist device based on O2 consumption.
    Drzewiecki GM; Pilla JJ; Welkowitz W
    IEEE Trans Biomed Eng; 1990 Feb; 37(2):128-37. PubMed ID: 2312137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. World-first implantable aortic valvo-pump (IAVP) with sufficient haemodynamic capacity.
    Qian KX; Wang DF; Topaz S; Zeng P; Ru WM; Yuan HY; Zwischenberg JB
    J Med Eng Technol; 2005; 29(6):302-4. PubMed ID: 16287680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow visualization techniques in a mock ventricle supported by a nonpulsatile left ventricular assist device.
    Khalil HA; Metcalfe RW; Kleis SJ; Lee EL; Gilbert NL; Kerr DT; Frazier OH; Cohn WE
    ASAIO J; 2009; 55(4):323-7. PubMed ID: 19512887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo evaluation of the "TinyPump" as a pediatric left ventricular assist device.
    Kitao T; Ando Y; Yoshikawa M; Kobayashi M; Kimura T; Ohsawa H; Machida S; Yokoyama N; Sakota D; Konno T; Ishihara K; Takatani S
    Artif Organs; 2011 May; 35(5):543-53. PubMed ID: 21595723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Left ventricular assist device weaning: hemodynamic response and relationship to stroke volume and rate reduction protocols.
    Slaughter MS; Sobieski MA; Koenig SC; Pappas PS; Tatooles AJ; Silver MA
    ASAIO J; 2006; 52(3):228-33. PubMed ID: 16760709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of left ventricular assist device performance and hydraulic force in a complete mock circulation loop.
    Timms D; Hayne M; Tan A; Pearcy M
    Artif Organs; 2005 Jul; 29(7):573-80. PubMed ID: 15982286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The safety system for the rotary blood pump, combination of the valve and LVAD pulsatile mode: in vitro test.
    Tayama E; Ohashi Y; Niimi Y; Takami Y; Ohtsuka G; Nakata K; Benkowski R; Glueck JA; Nosé Y
    Artif Organs; 1998 Apr; 22(4):342-5. PubMed ID: 9555966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.