BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 17846724)

  • 1. Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component.
    van Maris AJ; Winkler AA; Kuyper M; de Laat WT; van Dijken JP; Pronk JT
    Adv Biochem Eng Biotechnol; 2007; 108():179-204. PubMed ID: 17846724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of an inactive xylose isomerase into a functional enzyme by co-expression of GroEL-GroES chaperonins in Saccharomyces cerevisiae.
    Temer B; Dos Santos LV; Negri VA; Galhardo JP; Magalhães PHM; José J; Marschalk C; Corrêa TLR; Carazzolle MF; Pereira GAG
    BMC Biotechnol; 2017 Sep; 17(1):71. PubMed ID: 28888227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase.
    Smith J; van Rensburg E; Görgens JF
    BMC Biotechnol; 2014 May; 14():41. PubMed ID: 24884721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose.
    Jeppsson M; Johansson B; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Appl Environ Microbiol; 2002 Apr; 68(4):1604-9. PubMed ID: 11916674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects.
    Moysés DN; Reis VC; de Almeida JR; de Moraes LM; Torres FA
    Int J Mol Sci; 2016 Feb; 17(3):207. PubMed ID: 26927067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis.
    Verhoeven MD; Lee M; Kamoen L; van den Broek M; Janssen DB; Daran JG; van Maris AJ; Pronk JT
    Sci Rep; 2017 Apr; 7():46155. PubMed ID: 28401919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. D-Xylose Sensing in
    Brink DP; Borgström C; Persson VC; Ofuji Osiro K; Gorwa-Grauslund MF
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EasyClone 2.0: expanded toolkit of integrative vectors for stable gene expression in industrial Saccharomyces cerevisiae strains.
    Stovicek V; Borja GM; Forster J; Borodina I
    J Ind Microbiol Biotechnol; 2015 Nov; 42(11):1519-31. PubMed ID: 26376869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing xylose-fermentation capacity of engineered Saccharomyces cerevisiae by multistep evolutionary engineering in inhibitor-rich lignocellulose hydrolysate.
    Demeke MM; Echemendia D; Belo E; Foulquié-Moreno MR; Thevelein JM
    FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38604750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis.
    Feng X; Zhao H
    Microb Cell Fact; 2013 Nov; 12():114. PubMed ID: 24245823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of an economical xylose-utilizing Saccharomyces cerevisiae and its ethanol fermentation.
    Li F; Bai W; Zhang Y; Zhang Z; Zhang D; Shen N; Yuan J; Zhao G; Wang X
    FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38268490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic engineering of Zymobacter palmae for production of ethanol from xylose.
    Yanase H; Sato D; Yamamoto K; Matsuda S; Yamamoto S; Okamoto K
    Appl Environ Microbiol; 2007 Apr; 73(8):2592-9. PubMed ID: 17308178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered
    Huang M; Cui X; Zhang P; Jin Z; Li H; Liu J; Jiang Z
    Prep Biochem Biotechnol; 2024 Feb; ():1-10. PubMed ID: 38349751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An atlas of rational genetic engineering strategies for improved xylose metabolism in
    Vargas BO; Dos Santos JR; Pereira GAG; de Mello FDSB
    PeerJ; 2023; 11():e16340. PubMed ID: 38047029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of xylose epimerase on sugar assimilation and sensing in recombinant Saccharomyces cerevisiae carrying different xylose-utilization pathways.
    Persson VC; Perruca Foncillas R; Anderes TR; Ginestet C; Gorwa-Grauslund M
    Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):168. PubMed ID: 37932829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation and evaluation of pathway module efficiency: Quantitative approach to monitor and overcome evolving bottlenecks in xylose to ethanol pathway.
    Ma XY; Coleman B; Prabhu P; Wen F
    Bioresour Technol; 2024 Mar; 395():130377. PubMed ID: 38278451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring D-xylose oxidation in Saccharomyces cerevisiae through the Weimberg pathway.
    Wasserstrom L; Portugal-Nunes D; Almqvist H; Sandström AG; Lidén G; Gorwa-Grauslund MF
    AMB Express; 2018 Mar; 8(1):33. PubMed ID: 29508097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering xylose metabolism in thraustochytrid T18.
    Merkx-Jacques A; Rasmussen H; Muise DM; Benjamin JJR; Kottwitz H; Tanner K; Milway MT; Purdue LM; Scaife MA; Armenta RE; Woodhall DL
    Biotechnol Biofuels; 2018; 11():248. PubMed ID: 30237825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xylose Metabolization by a
    Lagos MAP; Caviativa JAC; Pinzón DCT; Roa DHR; Basso TO; Lozano MEV
    Indian J Microbiol; 2023 Mar; 63(1):84-90. PubMed ID: 37179578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Saccharomyces cerevisiae.
    Ostergaard S; Olsson L; Nielsen J
    Microbiol Mol Biol Rev; 2000 Mar; 64(1):34-50. PubMed ID: 10704473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.