These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 17846864)
1. Transformation products of extracellular NAD(+) in the rat liver: kinetics of formation and metabolic action. Broetto-Biazon AC; Bracht F; de Sá-Nakanishi AB; Lopez CH; Constantin J; Kelmer-Bracht AM; Bracht A Mol Cell Biochem; 2008 Jan; 307(1-2):41-50. PubMed ID: 17846864 [TBL] [Abstract][Full Text] [Related]
2. Transformation and action of extracellular NAD+ in perfused rat and mouse livers. Broetto-Biazon AC; Bracht F; Bracht L; Kelmer-Bracht AM; Bracht A Acta Pharmacol Sin; 2009 Jan; 30(1):90-7. PubMed ID: 19079292 [TBL] [Abstract][Full Text] [Related]
3. Transformation and actions of extracellular NADP(+) in the rat liver. Broetto-Biazon AC; Kangussu MM; Padilha F; Bracht F; Kelmer-Bracht AM; Bracht A Mol Cell Biochem; 2008 Oct; 317(1-2):85-95. PubMed ID: 18548198 [TBL] [Abstract][Full Text] [Related]
4. Direct NAD(P)H hydrolysis into ADP-ribose(P) and nicotinamide induced by reactive oxygen species: a new mechanism of oxygen radical toxicity. Tavazzi B; Di Pierro D; Amorini AM; Fazzina G; Galvano M; Lupi A; Giardina B; Lazzarino G Free Radic Res; 2000 Jul; 33(1):1-12. PubMed ID: 10826916 [TBL] [Abstract][Full Text] [Related]
5. Large supplements of nicotinic acid and nicotinamide increase tissue NAD+ and poly(ADP-ribose) levels but do not affect diethylnitrosamine-induced altered hepatic foci in Fischer-344 rats. Jackson TM; Rawling JM; Roebuck BD; Kirkland JB J Nutr; 1995 Jun; 125(6):1455-61. PubMed ID: 7782898 [TBL] [Abstract][Full Text] [Related]
6. [Interrelations of NAD and adenosine transformation in the rat liver]. Golovatskiĭ ID; Tsegel'skiĭ AA Ukr Biokhim Zh (1978); 1988; 60(2):30-5. PubMed ID: 2969155 [TBL] [Abstract][Full Text] [Related]
7. Inosine released after hypoxia activates hepatic glucose liberation through A3 adenosine receptors. Guinzberg R; Cortés D; Díaz-Cruz A; Riveros-Rosas H; Villalobos-Molina R; Piña E Am J Physiol Endocrinol Metab; 2006 May; 290(5):E940-51. PubMed ID: 16352677 [TBL] [Abstract][Full Text] [Related]
8. The action of extracellular NAD+ on gluconeogenesis in the perfused rat liver. Martins AG; Constantin J; Bracht F; Kelmer-Bracht AM; Bracht A Mol Cell Biochem; 2006 Jun; 286(1-2):115-24. PubMed ID: 16652226 [TBL] [Abstract][Full Text] [Related]
9. The action of extracellular NAD+ on Ca2+ efflux, hemodynamics and some metabolic parameters in the isolated perfused rat liver. Broetto-Biazon AC; Bracht A; Ishii-Iwamoto EL; de Moraes Silva V; Kelmer-Bracht AM Eur J Pharmacol; 2004 Jan; 484(2-3):291-301. PubMed ID: 14744616 [TBL] [Abstract][Full Text] [Related]
10. Liver parenchyma heterogeneity in the response to extracellular NAD+. Gimenes D; Constantin J; Comar JF; Kelmer-Bracht AM; Broetto-Biazon AC; Bracht A Cell Biochem Funct; 2006; 24(4):313-25. PubMed ID: 15920702 [TBL] [Abstract][Full Text] [Related]
11. Increase of mono(ADP-ribose) protein conjugate levels in rat liver induced by nicotinamide administration. Bredehorst R; Lengyel H; Hilz H; Stärk D; Siebert G Hoppe Seylers Z Physiol Chem; 1980 Apr; 361(4):559-62. PubMed ID: 6445859 [TBL] [Abstract][Full Text] [Related]
12. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases. Zhao K; Harshaw R; Chai X; Marmorstein R Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8563-8. PubMed ID: 15150415 [TBL] [Abstract][Full Text] [Related]
13. Metabolic effects and distribution space of flufenamic acid in the isolated perfused rat liver. Lopez CH; Bracht A; Yamamoto NS; dos Santos MD Chem Biol Interact; 1998 Nov; 116(1-2):105-22. PubMed ID: 9877204 [TBL] [Abstract][Full Text] [Related]
14. ADP ribosyl cyclase activity in rat parotid acinar cells. Looms D; Nauntofte B; Dissing S Eur J Morphol; 1998 Aug; 36 Suppl():181-5. PubMed ID: 9825918 [TBL] [Abstract][Full Text] [Related]
15. The action of extracellular NAD+ in the liver of healthy and tumor-bearing rats: model analysis of the tumor-induced modified response. de Sá-Nakanishi AB; Bracht F; Yamamoto NS; Padilha F; Kelmer-Bracht AM; Bracht A Exp Mol Pathol; 2008 Jun; 84(3):218-25. PubMed ID: 18387605 [TBL] [Abstract][Full Text] [Related]
16. Role of NAD(+) in the deacetylase activity of the SIR2-like proteins. Landry J; Slama JT; Sternglanz R Biochem Biophys Res Commun; 2000 Nov; 278(3):685-90. PubMed ID: 11095969 [TBL] [Abstract][Full Text] [Related]
17. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries. Sauve AA; Munshi C; Lee HC; Schramm VL Biochemistry; 1998 Sep; 37(38):13239-49. PubMed ID: 9748331 [TBL] [Abstract][Full Text] [Related]
18. The action of glibenclamide on glycogen catabolism and related parameters in the isolated perfused rat liver. Carvalho-Martini M; de Oliveira DS; Suzuki-Kemmelmeier F; Bracht A Res Commun Mol Pathol Pharmacol; 2006; 119(1-6):115-26. PubMed ID: 17974101 [TBL] [Abstract][Full Text] [Related]
19. NAD+-induced vasotoxicity in the pericyte-containing microvasculature of the rat retina: effect of diabetes. Liao SD; Puro DG Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):5032-8. PubMed ID: 17065524 [TBL] [Abstract][Full Text] [Related]
20. [ADP-ribose and cADP-ribose--endogenous regulators of cellular ionic balance. Cardiotropic effects of ADP-ribose]. Kuz'min VS; Sosulina LIu; Sukhova GS; Ashmarin IP Usp Fiziol Nauk; 2006; 37(1):3-17. PubMed ID: 16522000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]