BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 17847090)

  • 1. Molecular docking study of the interactions between the thioesterase domain of human fatty acid synthase and its ligands.
    Cheng F; Wang Q; Chen M; Quiocho FA; Ma J
    Proteins; 2008 Mar; 70(4):1228-34. PubMed ID: 17847090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative docking of dual conformations in human fatty acid synthase thioesterase domain reveals potential binding cavity for virtual screening of ligands.
    John A; Vetrivel U; Subramanian K; Deepa PR
    J Biomol Struct Dyn; 2017 May; 35(6):1350-1366. PubMed ID: 27145135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of Human Fatty Acid Synthase and in Silico Docking of Acyl Carrier Protein Domain and Its Partner Catalytic Domains.
    Viegas MF; Neves RPP; Ramos MJ; Fernandes PA
    J Phys Chem B; 2018 Jan; 122(1):77-85. PubMed ID: 29210581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational screening of fatty acid synthase inhibitors against thioesterase domain.
    Panman W; Nutho B; Chamni S; Dokmaisrijan S; Kungwan N; Rungrotmongkol T
    J Biomol Struct Dyn; 2018 Nov; 36(15):4114-4125. PubMed ID: 29161996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of FAS thioesterase domain with polyunsaturated fatty acyl adduct and inhibition by dihomo-gamma-linolenic acid.
    Zhang W; Chakravarty B; Zheng F; Gu Z; Wu H; Mao J; Wakil SJ; Quiocho FA
    Proc Natl Acad Sci U S A; 2011 Sep; 108(38):15757-62. PubMed ID: 21908709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by Orlistat.
    Pemble CW; Johnson LC; Kridel SJ; Lowther WT
    Nat Struct Mol Biol; 2007 Aug; 14(8):704-9. PubMed ID: 17618296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptides from purified soybean beta-conglycinin inhibit fatty acid synthase by interaction with the thioesterase catalytic domain.
    Martinez-Villaluenga C; Rupasinghe SG; Schuler MA; Gonzalez de Mejia E
    FEBS J; 2010 Mar; 277(6):1481-93. PubMed ID: 20148945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids.
    Leber C; Da Silva NA
    Biotechnol Bioeng; 2014 Feb; 111(2):347-58. PubMed ID: 23928901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human fatty acid synthase: structure and substrate selectivity of the thioesterase domain.
    Chakravarty B; Gu Z; Chirala SS; Wakil SJ; Quiocho FA
    Proc Natl Acad Sci U S A; 2004 Nov; 101(44):15567-72. PubMed ID: 15507492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of modification of the length and flexibility of the acyl carrier protein-thioesterase interdomain linker on functionality of the animal fatty acid synthase.
    Joshi AK; Witkowski A; Berman HA; Zhang L; Smith S
    Biochemistry; 2005 Mar; 44(10):4100-7. PubMed ID: 15751987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the P2 and P3 ligand binding features for hepatitis C virus NS3 protease using some 3D QSAR techniques.
    Wei HY; Lu CS; Lin TH
    J Mol Graph Model; 2008 Apr; 26(7):1131-44. PubMed ID: 18024210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular simulations of β-lactoglobulin complexed with fatty acids reveal the structural basis of ligand affinity to internal and possible external binding sites.
    Evoli S; Guzzi R; Rizzuti B
    Proteins; 2014 Oct; 82(10):2609-19. PubMed ID: 24916607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-induced conformational changes: improved predictions of ligand binding conformations and affinities.
    Frimurer TM; Peters GH; Iversen LF; Andersen HS; Møller NP; Olsen OH
    Biophys J; 2003 Apr; 84(4):2273-81. PubMed ID: 12668436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and dynamical aspects of Streptococcus gordonii FabH through molecular docking and MD simulations.
    Shamim A; Abbasi SW; Azam SS
    J Mol Graph Model; 2015 Jul; 60():180-96. PubMed ID: 26059477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico characterization of binding mode of CCR8 inhibitor: homology modeling, docking and membrane based MD simulation study.
    Gadhe CG; Balupuri A; Cho SJ
    J Biomol Struct Dyn; 2015; 33(11):2491-510. PubMed ID: 25617117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular insights on TNKS1/TNKS2 and inhibitor-IWR1 interactions.
    Kirubakaran P; Kothandan G; Cho SJ; Muthusamy K
    Mol Biosyst; 2014 Feb; 10(2):281-93. PubMed ID: 24291818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular docking and dynamic simulation evaluation of Rohinitib - Cantharidin based novel HSF1 inhibitors for cancer therapy.
    Agarwal T; Annamalai N; Khursheed A; Maiti TK; Arsad HB; Siddiqui MH
    J Mol Graph Model; 2015 Sep; 61():141-9. PubMed ID: 26245696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW; Briggs JM
    Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling of cardiac glycoside binding by the human sequence monoclonal antibody 1B3.
    Paula S; Monson N; Ball WJ
    Proteins; 2005 Aug; 60(3):382-91. PubMed ID: 15971203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of novel antilipogenic agents targeting fatty acid biosynthesis through structure-based virtual screening.
    Soulère L; Alix PM; Croze ML; Soulage CO
    Chem Biol Drug Des; 2018 Jul; 92(1):1366-1372. PubMed ID: 29635861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.