These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17847678)

  • 41. Microwave-Osmotic/Microwave-Vacuum Drying of Whole Cranberries: Comparison with Other Methods.
    Wray D; Ramaswamy HS
    J Food Sci; 2015 Dec; 80(12):E2792-802. PubMed ID: 26565564
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of microwave in processing of drug delivery systems.
    Wong TW
    Curr Drug Deliv; 2008 Apr; 5(2):77-84. PubMed ID: 18393808
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of combined ultrasonic and microwave vacuum drying on drying characteristics and physicochemical properties of Tremella fuciformis.
    Xu J; Wang D; Lei Y; Cheng L; Zhuang W; Tian Y
    Ultrason Sonochem; 2022 Mar; 84():105963. PubMed ID: 35240409
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High pressure-assisted vacuum-freeze drying: A novel, efficient way to accelerate moisture migration in shrimp processing.
    Ling JG; Xuan XT; Yu N; Cui Y; Shang HT; Liao XJ; Lin XD; Yu JF; Liu DH
    J Food Sci; 2020 Apr; 85(4):1167-1176. PubMed ID: 32275070
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phenolic content and some physical properties of dried broccoli as affected by drying method.
    Yilmaz MS; Şakiyan Ö; Barutcu Mazi I; Mazi BG
    Food Sci Technol Int; 2019 Jan; 25(1):76-88. PubMed ID: 30205717
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Drying performance and energy consumption of
    Zhang D; Huang D; Zhang X; Zhao H; Gong G; Tang X; Li L
    Food Sci Biotechnol; 2023 Jun; 32(7):969-977. PubMed ID: 37123070
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Apparatus and method for investigation of energy consumption of microwave assisted drying systems.
    Göllei A; Vass A; Magyar A; Pallai E
    Rev Sci Instrum; 2009 Oct; 80(10):104706. PubMed ID: 19895084
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced aqueous dissolution of a poorly water soluble drug by novel particle engineering technology: spray-freezing into liquid with atmospheric freeze-drying.
    Rogers TL; Nelsen AC; Sarkari M; Young TJ; Johnston KP; Williams RO
    Pharm Res; 2003 Mar; 20(3):485-93. PubMed ID: 12669973
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of microwave vacuum drying on glass transition temperature, gelatinization temperature, physical and chemical qualities of lotus seeds.
    Zhao Y; Jiang Y; Zheng B; Zhuang W; Zheng Y; Tian Y
    Food Chem; 2017 Aug; 228():167-176. PubMed ID: 28317710
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microwave-assisted drying of pharmaceutical granules and its impact on drug stability.
    Loh ZH; Liew CV; Lee CC; Heng PW
    Int J Pharm; 2008 Jul; 359(1-2):53-62. PubMed ID: 18455891
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of some water-miscible organic solvents for spray-drying enzymes and carbohydrates.
    Sass A; Lee G
    Drug Dev Ind Pharm; 2014 Jun; 40(6):749-57. PubMed ID: 23596974
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization of microwave vacuum drying of lotus (Nelumbo nucifera Gaertn.) seeds by response surface methodology.
    Tian Y; Zhang Y; Zeng S; Zheng Y; Chen F; Guo Z; Lin Y; Zheng B
    Food Sci Technol Int; 2012 Oct; 18(5):477-88. PubMed ID: 23144241
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modelling of nectarine drying under near infrared - Vacuum conditions.
    Alaei B; Chayjan RA
    Acta Sci Pol Technol Aliment; 2015; 14(1):15-27. PubMed ID: 28068016
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microwave-vacuum extraction cum drying of tomato slices: Optimization and functional characterization.
    Alvi T; Khan MKI; Maan AA; Rizwan M; Aamir M; Saeed F; Ateeq H; Raza MQ; Afzaal M; Shah MA
    Food Sci Nutr; 2023 Jul; 11(7):4263-4274. PubMed ID: 37457146
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vacuum Induced Surface Freezing as an effective method for improved inter- and intra-vial product homogeneity.
    Arsiccio A; Barresi A; De Beer T; Oddone I; Van Bockstal PJ; Pisano R
    Eur J Pharm Biopharm; 2018 Jul; 128():210-219. PubMed ID: 29626510
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of niflumic acid prepared by rapid microwave-assisted evaporation.
    Radacsi N; Stefanidis GD; Szabó-Révész P; Ambrus R
    J Pharm Biomed Anal; 2014 Sep; 98():16-21. PubMed ID: 24873734
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impact of Drying Process on Grindability and Physicochemical Properties of Celery.
    Rudy S; Dziki D; Biernacka B; Polak R; Krzykowski A; Krajewska A; Stanisławczyk R; Rudy M; Żurek J; Rudzki G
    Foods; 2024 Aug; 13(16):. PubMed ID: 39200512
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture.
    Zielinska M; Michalska A
    Food Chem; 2016 Dec; 212():671-80. PubMed ID: 27374583
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of drying on extruded pellets based on kappa-carrageenan.
    Thommes M; Blaschek W; Kleinebudde P
    Eur J Pharm Sci; 2007 Jun; 31(2):112-8. PubMed ID: 17448646
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Standardization of process parameters for microwave assisted convective dehydration of ginger.
    Mohanta B; Dash SK; Panda MK; Sahoo GR
    J Food Sci Technol; 2014 Apr; 51(4):673-81. PubMed ID: 24741160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.