These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 17847849)
21. Survey of cyclopids (Crustacea, Copepoda) in Brazil and preliminary screening of their potential as dengue vector predators. dos Santos LU; de Andrade CF Rev Saude Publica; 1997 Jun; 31(3):221-6. PubMed ID: 9515258 [TBL] [Abstract][Full Text] [Related]
22. Predatory efficacy of five locally available copepods on Aedes larvae under laboratory settings: An approach towards bio-control of dengue in Sri Lanka. Udayanga L; Ranathunge T; Iqbal MCM; Abeyewickreme W; Hapugoda M PLoS One; 2019; 14(5):e0216140. PubMed ID: 31136574 [TBL] [Abstract][Full Text] [Related]
23. Comparative evaluation of fecundity and survivorship of six copepod (Copepoda: Cyclopidae) species, in relation to selection of candidate biological control agents against Aedes aegypti. Phong TV; Tuno N; Kawada H; Takagi M J Am Mosq Control Assoc; 2008 Mar; 24(1):61-9. PubMed ID: 18437816 [TBL] [Abstract][Full Text] [Related]
24. Mosquitocidal activity of Solanum xanthocarpum fruit extract and copepod Mesocyclops thermocyclopoides for the control of dengue vector Aedes aegypti. Mahesh Kumar P; Murugan K; Kovendan K; Panneerselvam C; Prasanna Kumar K; Amerasan D; Subramaniam J; Kalimuthu K; Nataraj T Parasitol Res; 2012 Aug; 111(2):609-18. PubMed ID: 22398832 [TBL] [Abstract][Full Text] [Related]
25. Laboratory evaluation of Brazilian Mesocyclops (Copepoda: Cyclopidae) for mosquito control. Kay BH; Cabral CP; Sleigh AC; Brown MD; Ribeiro ZM; Vasconcelos AW J Med Entomol; 1992 Jul; 29(4):599-602. PubMed ID: 1495067 [TBL] [Abstract][Full Text] [Related]
26. Effects of Mesocyclops longisetus (Copepoda:Cyclopidae) on mosquitoes that inhabit tires: influence of litter type, quality, and quantity. Schreiber ET; Hallmon CF; Eskridge KM; Marten GG J Am Mosq Control Assoc; 1996 Dec; 12(4):688-94. PubMed ID: 9046477 [TBL] [Abstract][Full Text] [Related]
27. Combination of Mesocyclops thermocyclopoides and Bacillus thuringiensis var. israelensis: a better approach for the control of Aedes aegypti larvae in water containers. Chansang UR; Bhumiratana A; Kittayapong P J Vector Ecol; 2004 Dec; 29(2):218-26. PubMed ID: 15707281 [TBL] [Abstract][Full Text] [Related]
28. Control of larval Aedes aegypti (Diptera: Culicidae) by cyclopoid copepods in peridomestic breeding containers. Marten GG; Borjas G; Cush M; Fernandez E; Reid JW J Med Entomol; 1994 Jan; 31(1):36-44. PubMed ID: 8158627 [TBL] [Abstract][Full Text] [Related]
29. Prey choice by a freshwater copepod on larval Emerson LC; Holmes CJ; Cáceres CE J Vector Ecol; 2021 Dec; 46(2):200-206. PubMed ID: 35230024 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of Mesocyclops annulatus (Copepoda: Cyclopoidea) as a control agent of Aedes aegypti (Diptera: Culicidae) in Argentina. Marti GA; Micieli MV; Scorsetti AC; Liljesthröm G Mem Inst Oswaldo Cruz; 2004 Aug; 99(5):535-40. PubMed ID: 15543420 [TBL] [Abstract][Full Text] [Related]
31. Laboratory evaluation of the biocontrol potential of Mesocyclops thermocyclopoides (Copepoda: Cyclopidae) against mosquito larvae. Mittal PK; Dhiman RC; Adak T; Sharma VP Southeast Asian J Trop Med Public Health; 1997 Dec; 28(4):857-61. PubMed ID: 9656415 [TBL] [Abstract][Full Text] [Related]
32. National progress in dengue vector control in Vietnam: survey for Mesocyclops (Copepoda), Micronecta (Corixidae), and fish as biological control agents. Nam VS; Yen NT; Holynska M; Reid JW; Kay BH Am J Trop Med Hyg; 2000 Jan; 62(1):5-10. PubMed ID: 10761718 [TBL] [Abstract][Full Text] [Related]
33. Laboratory and field studies of Macrocyclops albidus (Crustacea: Copepoda) for biological control of mosquitoes in artificial containers in a subtropical environment. Rey JR; O'Connell S; Suárez S; Menéndez Z; Lounibos LP; Byer G J Vector Ecol; 2004 Jun; 29(1):124-34. PubMed ID: 15266749 [TBL] [Abstract][Full Text] [Related]
34. Impact of extreme climate and bioinvasion on temporal coupling of spring herring (Clupea harengus m.) larvae and their prey. Arula T; Ojaveer H; Klais R Mar Environ Res; 2014 Dec; 102():102-9. PubMed ID: 24933435 [TBL] [Abstract][Full Text] [Related]
35. Predation on the invasive mosquito Aedes japonicus (Diptera: Culicidae) by native copepod species in Germany. Früh L; Kampen H; Schaub GA; Werner D J Vector Ecol; 2019 Dec; 44(2):241-247. PubMed ID: 31729795 [TBL] [Abstract][Full Text] [Related]
36. Direct and indirect effects of predation and parasitism on the Anopheles gambiae mosquito. Ong'wen F; Onyango PO; Bukhari T Parasit Vectors; 2020 Jan; 13(1):43. PubMed ID: 32000840 [TBL] [Abstract][Full Text] [Related]
37. Size, not temperature, drives cyclopoid copepod predation of invasive mosquito larvae. Russell MC; Qureshi A; Wilson CG; Cator LJ PLoS One; 2021; 16(2):e0246178. PubMed ID: 33529245 [TBL] [Abstract][Full Text] [Related]
38. Direct and indirect effect of predators on Anopheles gambiae sensu stricto. Chobu M; Nkwengulila G; Mahande AM; Mwang'onde BJ; Kweka EJ Acta Trop; 2015 Feb; 142():131-7. PubMed ID: 25438260 [TBL] [Abstract][Full Text] [Related]
39. Inter-Population Similarities and Differences in Predation Efficiency of a Mosquito Natural Enemy. Cuthbert RN; Dalu T; Wasserman RJ; Weyl OLF; Froneman PW; Callaghan A; Dick JTA J Med Entomol; 2020 Nov; 57(6):1983-1987. PubMed ID: 32459349 [TBL] [Abstract][Full Text] [Related]
40. Laboratory evaluation of the biocontrol potential of Aphyosemion gularis against Anopheles larvae. Okorie A; Abiodun O J Vector Borne Dis; 2010 Sep; 47(3):181-4. PubMed ID: 20834090 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]