These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17848364)

  • 1. Premature deactivation of soleus during the propulsive phase of cat jumping.
    Kaya M; Leonard TR; Herzog W
    J R Soc Interface; 2008 Apr; 5(21):415-26. PubMed ID: 17848364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordination of medial gastrocnemius and soleus forces during cat locomotion.
    Kaya M; Leonard T; Herzog W
    J Exp Biol; 2003 Oct; 206(Pt 20):3645-55. PubMed ID: 12966056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical power and work of cat soleus, gastrocnemius and plantaris muscles during locomotion: possible functional significance of muscle design and force patterns.
    Prilutsky BI; Herzog W; Allinger TL
    J Exp Biol; 1996 Apr; 199(Pt 4):801-14. PubMed ID: 8788087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hindlimb extensor muscle function during jumping and swimming in the toad (Bufo marinus).
    Gillis GB; Biewener AA
    J Exp Biol; 2000 Dec; 203(Pt 23):3547-63. PubMed ID: 11060216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force-sharing between cat soleus and gastrocnemius muscles during walking: explanations based on electrical activity, properties, and kinematics.
    Prilutsky BI; Herzog W; Allinger TL
    J Biomech; 1994 Oct; 27(10):1223-35. PubMed ID: 7962010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer of mechanical energy between ankle and knee joints by gastrocnemius and plantaris muscles during cat locomotion.
    Prilutsky BI; Herzog W; Leonard T
    J Biomech; 1996 Apr; 29(4):391-403. PubMed ID: 8964769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive changes in locomotor activity following botulinum toxin injection in ankle extensor muscles of cats.
    Misiaszek JE; Pearson KG
    J Neurophysiol; 2002 Jan; 87(1):229-39. PubMed ID: 11784745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle architecture and force-velocity characteristics of cat soleus and medial gastrocnemius: implications for motor control.
    Spector SA; Gardiner PF; Zernicke RF; Roy RR; Edgerton VR
    J Neurophysiol; 1980 Nov; 44(5):951-60. PubMed ID: 7441324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force-sharing among the primary cat ankle muscles.
    Herzog W
    Eur J Morphol; 1998 Dec; 36(4-5):280-7. PubMed ID: 10099958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circadian force and EMG activity in hindlimb muscles of rhesus monkeys.
    Hodgson JA; Wichayanuparp S; Recktenwald MR; Roy RR; McCall G; Day MK; Washburn D; Fanton JW; Kozlovskaya I; Edgerton VR
    J Neurophysiol; 2001 Sep; 86(3):1430-44. PubMed ID: 11535689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hindlimb unloading on two hindlimb muscles during treadmill locomotion in rats.
    Canu MH; Falempin M
    Eur J Appl Physiol Occup Physiol; 1997; 75(4):283-8. PubMed ID: 9134358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of forelimb and hindlimb muscle activity during quadrupedal tied-belt and split-belt locomotion in intact cats.
    Frigon A; Thibaudier Y; Hurteau MF
    Neuroscience; 2015 Apr; 290():266-78. PubMed ID: 25644423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of ground reaction forces by hindlimb muscles during cat locomotion.
    Kaya M; Leonard TR; Herzog W
    J Biomech; 2006; 39(15):2752-66. PubMed ID: 16310793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive control for backward quadrupedal walking. II. Hindlimb muscle synergies.
    Buford JA; Smith JL
    J Neurophysiol; 1990 Sep; 64(3):756-66. PubMed ID: 2230922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive control for backward quadrupedal walking VI. metatarsophalangeal joint dynamics and motor patterns of digit muscles.
    Trank TV; Smith JL
    J Neurophysiol; 1996 Feb; 75(2):678-9. PubMed ID: 8714644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forces of individual cat ankle extensor muscles during locomotion predicted using static optimization.
    Prilutsky BI; Herzog W; Allinger TL
    J Biomech; 1997 Oct; 30(10):1025-33. PubMed ID: 9391869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The distal hindlimb musculature of the cat. Patterns of normal use.
    Abraham LD; Loeb GE
    Exp Brain Res; 1985; 58(3):583-93. PubMed ID: 4007096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid ankle extension during paw shakes: selective recruitment of fast ankle extensors.
    Smith JL; Betts B; Edgerton VR; Zernicke RF
    J Neurophysiol; 1980 Mar; 43(3):612-20. PubMed ID: 7373352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The EMG-force relationship of the cat soleus muscle and its association with contractile conditions during locomotion.
    Guimaraes AC; Herzog W; Allinger TL; Zhang YT
    J Exp Biol; 1995 Apr; 198(Pt 4):975-87. PubMed ID: 7730759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.