These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Locomotion of Mexican jumping beans. West DM; Lal IK; Leamy MJ; Hu DL Bioinspir Biomim; 2012 Sep; 7(3):036014. PubMed ID: 22573786 [TBL] [Abstract][Full Text] [Related]
5. Artificial annelid robot driven by soft actuators. Jung K; Koo JC; Nam JD; Lee YK; Choi HR Bioinspir Biomim; 2007 Jun; 2(2):S42-9. PubMed ID: 17671328 [TBL] [Abstract][Full Text] [Related]
6. Performance analysis of jump-gliding locomotion for miniature robotics. Vidyasagar A; Zufferey JC; Floreano D; Kovač M Bioinspir Biomim; 2015 Mar; 10(2):025006. PubMed ID: 25811417 [TBL] [Abstract][Full Text] [Related]
7. Running over unknown rough terrain with a one-legged planar robot. Andrews B; Miller B; Schmitt J; Clark JE Bioinspir Biomim; 2011 Jun; 6(2):026009. PubMed ID: 21555844 [TBL] [Abstract][Full Text] [Related]
8. An octopus-bioinspired solution to movement and manipulation for soft robots. Calisti M; Giorelli M; Levy G; Mazzolai B; Hochner B; Laschi C; Dario P Bioinspir Biomim; 2011 Sep; 6(3):036002. PubMed ID: 21670493 [TBL] [Abstract][Full Text] [Related]
9. A survey of bio-inspired compliant legged robot designs. Zhou X; Bi S Bioinspir Biomim; 2012 Dec; 7(4):041001. PubMed ID: 23151609 [TBL] [Abstract][Full Text] [Related]
10. A micro creeping robot for colonoscopy based on the earthworm. Zuo J; Yan G; Gao Z J Med Eng Technol; 2005; 29(1):1-7. PubMed ID: 15764374 [TBL] [Abstract][Full Text] [Related]
11. Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain. Li C; Pullin AO; Haldane DW; Lam HK; Fearing RS; Full RJ Bioinspir Biomim; 2015 Jun; 10(4):046003. PubMed ID: 26098002 [TBL] [Abstract][Full Text] [Related]
12. On extracting design principles from biology: I. Method-General answers to high-level design questions for bioinspired robots. Haberland M; Kim S Bioinspir Biomim; 2015 Feb; 10(1):016010. PubMed ID: 25643176 [TBL] [Abstract][Full Text] [Related]
13. Towards highly-tuned mobility in multiple domains with a dynamical legged platform. Miller BD; Clark JE Bioinspir Biomim; 2015 Jun; 10(4):046001. PubMed ID: 26080033 [TBL] [Abstract][Full Text] [Related]
15. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems. Asnafi A; Mahzoon M Bioinspir Biomim; 2011 Sep; 6(3):036005. PubMed ID: 21852716 [TBL] [Abstract][Full Text] [Related]
16. Special issue featuring selected papers from the International Workshop on Bio-Inspired Robots (Nantes, France, 6-8 April 2011). Boyer F; Stefanini C; Ruffier F; Viollet S Bioinspir Biomim; 2012 Jun; 7(2):020201. PubMed ID: 22619178 [No Abstract] [Full Text] [Related]
17. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Onal CD; Rus D Bioinspir Biomim; 2013 Jun; 8(2):026003. PubMed ID: 23524383 [TBL] [Abstract][Full Text] [Related]
18. A biologically inspired meta-control navigation system for the Psikharpax rat robot. Caluwaerts K; Staffa M; N'Guyen S; Grand C; Dollé L; Favre-Félix A; Girard B; Khamassi M Bioinspir Biomim; 2012 Jun; 7(2):025009. PubMed ID: 22617382 [TBL] [Abstract][Full Text] [Related]
19. A dragline-forming mobile robot inspired by spiders. Wang L; Culha U; Iida F Bioinspir Biomim; 2014 Mar; 9(1):016006. PubMed ID: 24434546 [TBL] [Abstract][Full Text] [Related]
20. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research. Raj A; Thakur A Bioinspir Biomim; 2016 Apr; 11(3):031001. PubMed ID: 27073001 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]