BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17849180)

  • 1. Fluorescence quenching and time-resolved fluorescence studies of alpha-mannosidase from Aspergillus fischeri (NCIM 508).
    Shashidhara KS; Gaikwad SM
    J Fluoresc; 2007 Nov; 17(6):599-605. PubMed ID: 17849180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady state and picosecond time-resolved fluorescence studies on native, desulpho and deflavo xanthine oxidase.
    Sau AK; Mitra S
    Biochim Biophys Acta; 2000 Sep; 1481(2):273-82. PubMed ID: 11018718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A photoreversible conformational change in 124 kDa Avena phytochrome.
    Singh BR; Chai YG; Song PS; Lee J; Robinson GW
    Biochim Biophys Acta; 1988 Dec; 936(3):395-405. PubMed ID: 3196711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence quenching of dimeric and monomeric forms of yeast hexokinase (PII): effect of substrate binding steady-state and time-resolved fluorescence studies.
    Maity H; Jarori GK
    Physiol Chem Phys Med NMR; 2002; 34(1):43-60. PubMed ID: 12403274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodotorula aurantiaca penicillin V acylase: active site characterization and fluorometric studies.
    Kumar A; Gowda NM; Gaikwad S; Pundle A
    J Photochem Photobiol B; 2009 Nov; 97(2):109-16. PubMed ID: 19819716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the tryptophan environments of interleukins 1 alpha and 1 beta by fluorescence quenching and lifetime measurements.
    Epps DE; Yem AW; Deibel MR
    Arch Biochem Biophys; 1989 Nov; 275(1):82-91. PubMed ID: 2817905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inaccessibility of tryptophan residues of recombinant human renin to quenching agents.
    Epps DE; Poorman R; Hui J; Carlson W; Heinrikson R
    J Biol Chem; 1987 Aug; 262(22):10570-3. PubMed ID: 3301839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of tryptophan residues of cytochrome P450scc with a highly specific fluorescence quencher, a substrate analogue, compared to acrylamide and iodide.
    Lange R; Anzenbacher P; Müller S; Maurin L; Balny C
    Eur J Biochem; 1994 Dec; 226(3):963-70. PubMed ID: 7813487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady state fluorescence studies of wild type recombinant cinnamoyl CoA reductase (Ll-CCRH1) and its active site mutants.
    Sonawane P; Vishwakarma RK; Singh S; Gaikwad S; Khan BM
    J Fluoresc; 2014 May; 24(3):665-73. PubMed ID: 24322526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state and time-resolved fluorescence studies on Trichosanthes cucumerina seed lectin.
    Kenoth R; Swamy MJ
    J Photochem Photobiol B; 2003 Mar; 69(3):193-201. PubMed ID: 12695033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the microenvironments of tryptophan residues in the monomeric crystallins of the bovine lens.
    Augusteyn RC; Chandrasekher G; Ghiggino KP; Vassett P
    Biochim Biophys Acta; 1994 Mar; 1205(1):89-96. PubMed ID: 8142489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization and environment of tryptophans in soluble and membrane-bound states of a pore-forming toxin from Staphylococcus aureus.
    Raja SM; Rawat SS; Chattopadhyay A; Lala AK
    Biophys J; 1999 Mar; 76(3):1469-79. PubMed ID: 10049328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence and circular dichroism studies on the accessibility of tryptophan residues and unfolding of a jacalin-related α-d-galactose-specific lectin from mulberry (Morus indica).
    Datta D; J Swamy M
    J Photochem Photobiol B; 2017 May; 170():108-117. PubMed ID: 28414980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the tryptophan fluorescence and hydrodynamic properties of rat DNA polymerase beta.
    Kim SJ; Lewis MS; Knutson JR; Porter DK; Kumar A; Wilson SH
    J Mol Biol; 1994 Nov; 244(2):224-35. PubMed ID: 7966332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotin binding changes the conformation and decreases tryptophan accessibility of streptavidin.
    Kurzban GP; Gitlin G; Bayer EA; Wilchek M; Horowitz PM
    J Protein Chem; 1990 Dec; 9(6):673-82. PubMed ID: 2073320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophan fluorescence quenching in rabbit skeletal myosin rod.
    Chang YC; Ludescher RD
    Biophys Chem; 1993 Nov; 48(1):49-59. PubMed ID: 8257767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state fluorescence and time-resolved fluorescence monitor changes in tryptophan environment in arginase from Saccharomyces cerevisiae upon removal of catalytic and structural metal ions.
    Green SM; Knutson JR; Hensley P
    Biochemistry; 1990 Oct; 29(39):9159-68. PubMed ID: 2271585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence and circular dichroism spectroscopic studies on bovine lactoperoxidase.
    Deva MS; Behere DV
    Biometals; 1999 Sep; 12(3):219-25. PubMed ID: 10581684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-function relationship of xylanase: fluorimetric analysis of the tryptophan environment.
    Bandivadekar KR; Deshpande VV
    Biochem J; 1996 Apr; 315 ( Pt 2)(Pt 2):583-7. PubMed ID: 8615833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved fluorescence studies of genetically engineered Escherichia coli glutamine synthetase. Effects of ATP on the tryptophan-57 loop.
    Atkins WM; Stayton PS; Villafranca JJ
    Biochemistry; 1991 Apr; 30(14):3406-16. PubMed ID: 1672820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.