These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17850244)

  • 1. Do ERP components triggered during attentional orienting represent supramodal attentional control?
    Seiss E; Gherri E; Eardley AF; Eimer M
    Psychophysiology; 2007 Nov; 44(6):987-90. PubMed ID: 17850244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An event-related potential study of supramodal attentional control and crossmodal attention effects.
    Green JJ; McDonald JJ
    Psychophysiology; 2006 Mar; 43(2):161-71. PubMed ID: 16712586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateralized ERP components related to spatial orienting: discriminating the direction of attention from processing sensory aspects of the cue.
    Jongen EM; Smulders FT; Van der Heiden JS
    Psychophysiology; 2007 Nov; 44(6):968-86. PubMed ID: 17617171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The orienting of visuospatial attention: an event-related brain potential study.
    Talsma D; Slagter HA; Nieuwenhuis S; Hage J; Kok A
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):117-29. PubMed ID: 15925498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cue-locked lateralized components in a tactile spatial attention task: Evidence for a functional dissociation between ADAN and LSN.
    Gherri E; Gooray E; Forster B
    Psychophysiology; 2016 Apr; 53(4):507-17. PubMed ID: 26695445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eye movement preparation causes spatially-specific modulation of auditory processing: new evidence from event-related brain potentials.
    Gherri E; Driver J; Eimer M
    Brain Res; 2008 Aug; 1224():88-101. PubMed ID: 18614157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crossing the hands disrupts tactile spatial attention but not motor attention: evidence from event-related potentials.
    Gherri E; Forster B
    Neuropsychologia; 2012 Jul; 50(9):2303-16. PubMed ID: 22683449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ; Green JJ
    Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early posterior ERP components do not reflect the control of attentional shifts toward expected peripheral events.
    van Velzen J; Eimer M
    Psychophysiology; 2003 Sep; 40(5):827-31. PubMed ID: 14696736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural activity associated with attention orienting triggered by gaze cues: A study of lateralized ERPs.
    Holmes A; Mogg K; Garcia LM; Bradley BP
    Soc Neurosci; 2010; 5(3):285-95. PubMed ID: 20162493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control mechanisms mediating shifts of attention in auditory and visual space: a spatio-temporal ERP analysis.
    Green JJ; Teder-Sälejärvi WA; McDonald JJ
    Exp Brain Res; 2005 Oct; 166(3-4):358-69. PubMed ID: 16075294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of attentional filtering demands on preparatory ERPs elicited in a spatial cueing task.
    Seiss E; Driver J; Eimer M
    Clin Neurophysiol; 2009 Jun; 120(6):1087-95. PubMed ID: 19410504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking the voluntary control of auditory spatial attention with event-related brain potentials.
    Störmer VS; Green JJ; McDonald JJ
    Psychophysiology; 2009 Mar; 46(2):357-66. PubMed ID: 19170950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lost in vision: ERP correlates of exogenous tactile attention when engaging in a visual task.
    Jones A; Forster B
    Neuropsychologia; 2013 Mar; 51(4):675-85. PubMed ID: 23340481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eye gaze triggers reflexive attention shifts: evidence from lateralised ERPs.
    Feng Q; Zhang X
    Brain Res; 2014 Nov; 1589():37-44. PubMed ID: 25241361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large lateralized EDAN-like brain potentials in a gaze-shift detection task.
    Kirk Driller K; Stephani T; Dimigen O; Sommer W
    Psychophysiology; 2019 Jul; 56(7):e13361. PubMed ID: 30848515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ERP evidence for selective drop in attentional costs in uncertain environments: challenging a purely premotor account of covert orienting of attention.
    Lasaponara S; Chica AB; Lecce F; Lupianez J; Doricchi F
    Neuropsychologia; 2011 Jul; 49(9):2648-57. PubMed ID: 21640737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ERP study of preparatory and inhibitory mechanisms in a cued saccade task.
    Van der Stigchel S; Heslenfeld DJ; Theeuwes J
    Brain Res; 2006 Aug; 1105(1):32-45. PubMed ID: 16595127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal dynamics of lateralized ERP components elicited during endogenous attentional shifts to relevant tactile events.
    van Velzen J; Forster B; Eimer M
    Psychophysiology; 2002 Nov; 39(6):874-8. PubMed ID: 12462516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG Correlates of Preparatory Orienting, Contextual Updating, and Inhibition of Sensory Processing in Left Spatial Neglect.
    Lasaponara S; D'Onofrio M; Pinto M; Dragone A; Menicagli D; Bueti D; De Lucia M; Tomaiuolo F; Doricchi F
    J Neurosci; 2018 Apr; 38(15):3792-3808. PubMed ID: 29555852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.