BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 17850300)

  • 1. Thiol redox state and oxidative stress affect sclerotial differentiation of the phytopathogenic fungi Sclerotium rolfsii and Sclerotinia sclerotiorum.
    Patsoukis N; Georgiou CD
    J Appl Microbiol; 2008 Jan; 104(1):42-50. PubMed ID: 17850300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of thiol redox state modulators on oxidative stress and sclerotial differentiation of the phytopathogenic fungus Rhizoctonia solani.
    Patsoukis N; Georgiou CD
    Arch Microbiol; 2007 Sep; 188(3):225-33. PubMed ID: 17429612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation of Sclerotinia minor depends on thiol redox state and oxidative stress.
    Patsoukis N; Georgiou CD
    Can J Microbiol; 2008 Jan; 54(1):28-36. PubMed ID: 18388969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiol redox state and related enzymes in sclerotium-forming filamentous phytopathogenic fungi.
    Patsoukis N; Georgiou DC
    Mycol Res; 2008 May; 112(Pt 5):602-10. PubMed ID: 18400483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of glutathione biosynthesis-related modulators on the thiol redox state enzymes and on sclerotial differentiation of filamentous phytopathogenic fungi.
    Patsoukis N; Georgiou CD
    Mycopathologia; 2007 Jun; 163(6):335-47. PubMed ID: 17387631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide radical is involved in the sclerotial differentiation of filamentous phytopathogenic fungi: identification of a fungal xanthine oxidase.
    Papapostolou I; Georgiou CD
    Fungal Biol; 2010; 114(5-6):387-95. PubMed ID: 20943149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen peroxide is involved in the sclerotial differentiation of filamentous phytopathogenic fungi.
    Papapostolou I; Georgiou CD
    J Appl Microbiol; 2010 Dec; 109(6):1929-36. PubMed ID: 20681971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. beta-Carotene production and its role in sclerotial differentiation of Sclerotium rolfsii.
    Georgiou CD; Zervoudakis G; Tairis N; Kornaros M
    Fungal Genet Biol; 2001 Oct; 34(1):11-20. PubMed ID: 11567548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipofuscins and sclerotial differentiation in phytopathogenic fungi.
    Georgiou CD; Zees A
    Mycopathologia; 2002; 153(4):203-8. PubMed ID: 12014481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascorbic acid might play a role in the sclerotial differentiation of Sclerotium rolfsii.
    Georgiou CD; Zervoudakis G; Petropoulou KP
    Mycologia; 2003; 95(2):308-16. PubMed ID: 21156616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol redox state and lipid and protein oxidation in the mouse striatum after pentylenetetrazol-induced epileptic seizure.
    Patsoukis N; Zervoudakis G; Georgiou CD; Angelatou F; Matsokis NA; Panagopoulos NT
    Epilepsia; 2005 Aug; 46(8):1205-11. PubMed ID: 16060929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell proliferating and differentiating role of H2O2 in Sclerotium rolfsii and Sclerotinia sclerotiorum.
    Papapostolou I; Sideri M; Georgiou CD
    Microbiol Res; 2014; 169(7-8):527-32. PubMed ID: 24388556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol redox state and oxidative stress in midbrain and striatum of weaver mutant mice, a genetic model of nigrostriatal dopamine deficiency.
    Patsoukis N; Papapostolou I; Zervoudakis G; Georgiou CD; Matsokis NA; Panagopoulos NT
    Neurosci Lett; 2005 Mar; 376(1):24-8. PubMed ID: 15694268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of oxidative stress and exogenous beta-carotene on sclerotial differentiation and carotenoid yield of Penicillium sp. PT95.
    Han JR; Zhao WJ; Gao YY; Yuan JM
    Lett Appl Microbiol; 2005; 40(6):412-7. PubMed ID: 15892735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta-carotene production and sclerotial differentiation in Sclerotinia minor.
    Zervoudakis G; Tairis N; Salahas G; Georgiou CD
    Mycol Res; 2003 May; 107(Pt 5):624-31. PubMed ID: 12884961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sclerotial biomass and carotenoid yield of Penicillium sp. PT95 under oxidative growth conditions and in the presence of antioxidant ascorbic acid.
    Li XL; Cui XH; Han JR
    J Appl Microbiol; 2006 Sep; 101(3):725-31. PubMed ID: 16907823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.).
    Errakhi R; Lebrihi A; Barakate M
    J Appl Microbiol; 2009 Aug; 107(2):672-81. PubMed ID: 19302305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiol redox state (TRS) and oxidative stress in the mouse hippocampus after pentylenetetrazol-induced epileptic seizure.
    Patsoukis N; Zervoudakis G; Panagopoulos NT; Georgiou CD; Angelatou F; Matsokis NA
    Neurosci Lett; 2004 Mar; 357(2):83-6. PubMed ID: 15036580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological and molecular aspects of sclerotial development in the phytopathogenic fungus Sclerotinia sclerotiorum.
    Sousa Melo B; Voltan AR; Arruda W; Cardoso Lopes FA; Georg RC; Ulhoa CJ
    Microbiol Res; 2019 Dec; 229():126326. PubMed ID: 31493702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of alpha-lipoic acid on LPS-induced oxidative stress in the heart.
    Goraca A; Piechota A; Huk-Kolega H
    J Physiol Pharmacol; 2009 Mar; 60(1):61-8. PubMed ID: 19439808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.