These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 17850332)
1. Probing the determinants of coenzyme specificity in Peptostreptococcus asaccharolyticus glutamate dehydrogenase by site-directed mutagenesis. Carrigan JB; Engel PC FEBS J; 2007 Oct; 274(19):5167-74. PubMed ID: 17850332 [TBL] [Abstract][Full Text] [Related]
2. Properties of the thermostable glutamate dehydrogenase of the mesophilic anaerobe Peptostreptoccus asaccharolyticus purified by a novel method after over-expression in an Escherichia coli host. Carrigan JB; Coughlan S; Engel PC FEMS Microbiol Lett; 2005 Mar; 244(1):53-9. PubMed ID: 15727821 [TBL] [Abstract][Full Text] [Related]
3. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes. Cui K; Ma Q; Lu AY; Yang CS Arch Biochem Biophys; 1995 Nov; 323(2):265-73. PubMed ID: 7487087 [TBL] [Abstract][Full Text] [Related]
4. D175 discriminates between NADH and NADPH in the coenzyme binding site of Lactobacillus delbrueckii subsp. bulgaricus D-lactate dehydrogenase. Bernard N; Johnsen K; Holbrook JJ; Delcour J Biochem Biophys Res Commun; 1995 Mar; 208(3):895-900. PubMed ID: 7702618 [TBL] [Abstract][Full Text] [Related]
5. Re-engineering the discrimination between the oxidized coenzymes NAD+ and NADP+ in clostridial glutamate dehydrogenase and a thorough reappraisal of the coenzyme specificity of the wild-type enzyme. Capone M; Scanlon D; Griffin J; Engel PC FEBS J; 2011 Jul; 278(14):2460-8. PubMed ID: 21564547 [TBL] [Abstract][Full Text] [Related]
6. Structural determinants of nucleotide coenzyme specificity in the distinctive dinucleotide binding fold of HMG-CoA reductase from Pseudomonas mevalonii. Friesen JA; Lawrence CM; Stauffacher CV; Rodwell VW Biochemistry; 1996 Sep; 35(37):11945-50. PubMed ID: 8810898 [TBL] [Abstract][Full Text] [Related]
7. Identification of an arginine residue in the dual coenzyme-specific glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides that plays a key role in binding NADP+ but not NAD+. Levy HR; Vought VE; Yin X; Adams MJ Arch Biochem Biophys; 1996 Feb; 326(1):145-51. PubMed ID: 8579362 [TBL] [Abstract][Full Text] [Related]
8. Probing the kinetic mechanism and coenzyme specificity of glutathione reductase from the cyanobacterium Anabaena PCC 7120 by redesign of the pyridine-nucleotide-binding site. Danielson UH; Jiang F; Hansson LO; Mannervik B Biochemistry; 1999 Jul; 38(29):9254-63. PubMed ID: 10413499 [TBL] [Abstract][Full Text] [Related]
9. Reversal of the extreme coenzyme selectivity of Clostridium symbiosum glutamate dehydrogenase. Sharkey MA; Gori A; Capone M; Engel PC FEBS J; 2012 Sep; 279(17):3003-9. PubMed ID: 22747945 [TBL] [Abstract][Full Text] [Related]
10. Determinants of substrate specificity in the superfamily of amino acid dehydrogenases. Baker PJ; Waugh ML; Wang XG; Stillman TJ; Turnbull AP; Engel PC; Rice DW Biochemistry; 1997 Dec; 36(51):16109-15. PubMed ID: 9405044 [TBL] [Abstract][Full Text] [Related]
11. Change of nucleotide specificity and enhancement of catalytic efficiency in single point mutants of Vibrio harveyi aldehyde dehydrogenase. Zhang L; Ahvazi B; Szittner R; Vrielink A; Meighen E Biochemistry; 1999 Aug; 38(35):11440-7. PubMed ID: 10471295 [TBL] [Abstract][Full Text] [Related]
12. Engineering of pyridine nucleotide specificity of nitrate reductase: mutagenesis of recombinant cytochrome b reductase fragment of Neurospora crassa NADPH:Nitrate reductase. Shiraishi N; Croy C; Kaur J; Campbell WH Arch Biochem Biophys; 1998 Oct; 358(1):104-15. PubMed ID: 9750171 [TBL] [Abstract][Full Text] [Related]
13. Characterization of Peptostreptococcus asaccharolyticus glutamate dehydrogenase purified by dye-ligand chromatography. Hornby DP; Engel PC J Gen Microbiol; 1984 Sep; 130(9):2385-94. PubMed ID: 6502134 [TBL] [Abstract][Full Text] [Related]
14. Coenzyme site-directed mutants of photosynthetic A4-GAPDH show selectively reduced NADPH-dependent catalysis, similar to regulatory AB-GAPDH inhibited by oxidized thioredoxin. Sparla F; Fermani S; Falini G; Zaffagnini M; Ripamonti A; Sabatino P; Pupillo P; Trost P J Mol Biol; 2004 Jul; 340(5):1025-37. PubMed ID: 15236965 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for the alteration of coenzyme specificity in a malate dehydrogenase mutant. Tomita T; Fushinobu S; Kuzuyama T; Nishiyama M Biochem Biophys Res Commun; 2006 Aug; 347(2):502-8. PubMed ID: 16828705 [TBL] [Abstract][Full Text] [Related]
16. Probing the affinity and specificity of yeast alcohol dehydrogenase I for coenzymes. Fan F; Plapp BV Arch Biochem Biophys; 1999 Jul; 367(2):240-9. PubMed ID: 10395740 [TBL] [Abstract][Full Text] [Related]
17. Site-directed mutagenesis of active site residues of phosphite dehydrogenase. Woodyer R; Wheatley JL; Relyea HA; Rimkus S; van der Donk WA Biochemistry; 2005 Mar; 44(12):4765-74. PubMed ID: 15779903 [TBL] [Abstract][Full Text] [Related]
18. Modular coenzyme specificity: a domain-swopped chimera of glutamate dehydrogenase. Sharkey MA; Engel PC Proteins; 2009 Nov; 77(2):268-78. PubMed ID: 19425107 [TBL] [Abstract][Full Text] [Related]
19. Residues that influence coenzyme preference in the aldehyde dehydrogenases. González-Segura L; Riveros-Rosas H; Julián-Sánchez A; Muñoz-Clares RA Chem Biol Interact; 2015 Jun; 234():59-74. PubMed ID: 25601141 [TBL] [Abstract][Full Text] [Related]
20. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA. Robinson R; Franceschini S; Fedkenheuer M; Rodriguez PJ; Ellerbrock J; Romero E; Echandi MP; Martin Del Campo JS; Sobrado P Biochim Biophys Acta; 2014 Apr; 1844(4):778-84. PubMed ID: 24534646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]