These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 17850336)

  • 1. Sanio's laws revisited. Size-dependent changes in the xylem architecture of trees.
    Mencuccini M; Hölttä T; Petit G; Magnani F
    Ecol Lett; 2007 Nov; 10(11):1084-93. PubMed ID: 17850336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convergent tapering of xylem conduits in different woody species.
    Anfodillo T; Carraro V; Carrer M; Fior C; Rossi S
    New Phytol; 2006; 169(2):279-90. PubMed ID: 16411931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of tree architecture on conduit diameter and frequency from small distal roots to branch tips in Betula pendula, Picea abies and Pinus sylvestris.
    Lintunen A; Kalliokoski T
    Tree Physiol; 2010 Nov; 30(11):1433-47. PubMed ID: 21030407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees.
    Sperry JS; Meinzer FC; McCulloh KA
    Plant Cell Environ; 2008 May; 31(5):632-45. PubMed ID: 18088335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testing the equi-resistance principle of the xylem transport system in a small ash tree: empirical support from anatomical analyses.
    Bettiati D; Petit G; Anfodillo T
    Tree Physiol; 2012 Feb; 32(2):171-7. PubMed ID: 22262584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional analysis of the anatomical growth response of European conifers to mechanical disturbance.
    Schneuwly DM; Stoffel M; Dorren LK; Berger F
    Tree Physiol; 2009 Oct; 29(10):1247-57. PubMed ID: 19696053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus) trees.
    Petit G; Anfodillo T; Mencuccini M
    New Phytol; 2008; 177(3):653-664. PubMed ID: 18069964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unifying constructal theory of tree roots, canopies and forests.
    Bejan A; Lorente S; Lee J
    J Theor Biol; 2008 Oct; 254(3):529-40. PubMed ID: 18647610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for discontinuous water columns in the xylem conduit of tall birch trees.
    Westhoff M; Zimmermann D; Schneider H; Wegner LH; Gessner P; Jakob P; Bamberg E; Shirley S; Bentrup FW; Zimmermann U
    Plant Biol (Stuttg); 2009 May; 11(3):307-27. PubMed ID: 19470103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance.
    Petit G; Pfautsch S; Anfodillo T; Adams MA
    New Phytol; 2010 Sep; 187(4):1146-1153. PubMed ID: 20497350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hydraulic-photosynthetic model based on extended HLH and its application to Coast redwood (Sequoia sempervirens).
    Du N; Fan J; Chen S; Liu Y
    J Theor Biol; 2008 Jul; 253(2):393-400. PubMed ID: 18440559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and verification of a water and sugar transport model using measured stem diameter variations.
    De Schepper V; Steppe K
    J Exp Bot; 2010 May; 61(8):2083-99. PubMed ID: 20176887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A carbon cost-gain model explains the observed patterns of xylem safety and efficiency.
    Hölttä T; Mencuccini M; Nikinmaa E
    Plant Cell Environ; 2011 Nov; 34(11):1819-34. PubMed ID: 21689111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling of auxin transport affected by gravity and differential radial growth.
    Forest L; Padilla F; Martínez S; Demongeot J; San Martín J
    J Theor Biol; 2006 Jul; 241(2):241-51. PubMed ID: 16403534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of phloem and xylem hydraulic architecture in Picea abies stems.
    Jyske T; Hölttä T
    New Phytol; 2015 Jan; 205(1):102-15. PubMed ID: 25124270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A global analysis of xylem vessel length in woody plants.
    Jacobsen AL; Pratt RB; Tobin MF; Hacke UG; Ewers FW
    Am J Bot; 2012 Oct; 99(10):1583-91. PubMed ID: 22965850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant physiology in theory and practice: an analysis of the WBE model for vascular plants.
    Petit G; Anfodillo T
    J Theor Biol; 2009 Jul; 259(1):1-4. PubMed ID: 19289132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth-size scaling relationships of woody plant species differ from predictions of the Metabolic Ecology Model.
    Russo SE; Wiser SK; Coomes DA
    Ecol Lett; 2007 Oct; 10(10):889-901. PubMed ID: 17845289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates.
    Olson ME; Anfodillo T; Rosell JA; Petit G; Crivellaro A; Isnard S; León-Gómez C; Alvarado-Cárdenas LO; Castorena M
    Ecol Lett; 2014 Aug; 17(8):988-97. PubMed ID: 24847972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Model for Size-Dependent Tree Growth in Forests.
    Ishihara MI; Konno Y; Umeki K; Ohno Y; Kikuzawa K
    PLoS One; 2016; 11(4):e0152219. PubMed ID: 27035709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.