These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 17850541)

  • 21. Phenotypic diversification is associated with host-induced transposon derepression in the sudden oak death pathogen Phytophthora ramorum.
    Kasuga T; Kozanitas M; Bui M; Hüberli D; Rizzo DM; Garbelotto M
    PLoS One; 2012; 7(4):e34728. PubMed ID: 22529930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repeated Emergence of Sudden Oak Death in Oregon: Chronology, Impact, and Management.
    LeBoldus JM; Navarro SM; Kline N; Ritokova G; Grünwald NJ
    Plant Dis; 2022 Dec; 106(12):3013-3021. PubMed ID: 35486603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phytophthora ramorum does not cause physiologically significant systemic injury to California bay laurel, its primary reservoir host.
    DiLeo MV; Bostock RM; Rizzo DM
    Phytopathology; 2009 Nov; 99(11):1307-11. PubMed ID: 19821735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of individual, community, and landscape drivers on the dynamics of a wildland forest epidemic.
    Haas SE; Cushman JH; Dillon WW; Rank NE; Rizzo DM; Meentemeyer RK
    Ecology; 2016 Mar; 97(3):649-60. PubMed ID: 27197392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sudden oak death: Phytophthora ramorum exhibits transatlantic differences.
    Brasier C
    Mycol Res; 2003 Mar; 107(Pt 3):258-9. PubMed ID: 12825493
    [No Abstract]   [Full Text] [Related]  

  • 26. Composting is an effective treatment option for sanitization of Phytophthora ramorum-infected plant material.
    Swain S; Harnik T; Mejia-Chang M; Hayden K; Bakx W; Creque J; Garbelotto M
    J Appl Microbiol; 2006 Oct; 101(4):815-27. PubMed ID: 16968293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Constitutive phenolic biomarkers identify naïve Quercus agrifolia resistant to Phytophthora ramorum, the causal agent of sudden oak death.
    Conrad AO; McPherson BA; Wood DL; Madden LV; Bonello P
    Tree Physiol; 2017 Dec; 37(12):1686-1696. PubMed ID: 29036534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phytophthora foliorum sp. nov., a new species causing leaf blight of azalea.
    Donahoo R; Blomquist CL; Thomas SL; Moulton JK; Cooke DE; Lamour KH
    Mycol Res; 2006 Nov; 110(Pt 11):1309-22. PubMed ID: 17070028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variation in Susceptibility of Tanoak to the NA1 and EU1 Lineages of
    Søndreli KL; Kanaskie A; Keriö S; LeBoldus JM
    Plant Dis; 2019 Dec; 103(12):3154-3160. PubMed ID: 31560616
    [No Abstract]   [Full Text] [Related]  

  • 30. Phytophthora quercetorum sp. nov., a novel species isolated from eastern and north-central USA oak forest soils.
    Balci Y; Balci S; Blair JE; Park SY; Kang S; Macdonald WL
    Mycol Res; 2008 Aug; 112(Pt 8):906-16. PubMed ID: 18554891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Local Eradication of
    Daniels HA; Navarro SM; LeBoldus JM
    Plant Dis; 2022 May; 106(5):1392-1400. PubMed ID: 35100027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AFLPs detect low genetic diversity for Phytophthora nemorosa and P. pseudosyringae in the US and Europe.
    Linzer RE; Rizzo DM; Cacciola SO; Garbelotto M
    Mycol Res; 2009 Mar; 113(Pt 3):298-307. PubMed ID: 19061958
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Host-induced aneuploidy and phenotypic diversification in the Sudden Oak Death pathogen Phytophthora ramorum.
    Kasuga T; Bui M; Bernhardt E; Swiecki T; Aram K; Cano LM; Webber J; Brasier C; Press C; Grünwald NJ; Rizzo DM; Garbelotto M
    BMC Genomics; 2016 May; 17():385. PubMed ID: 27206972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mortality and community changes drive sudden oak death impacts on litterfall and soil nitrogen cycling.
    Cobb RC; Eviner VT; Rizzo DM
    New Phytol; 2013 Oct; 200(2):422-431. PubMed ID: 23790136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Rapid Diagnostic Test to Distinguish Between American and European Populations of Phytophthora ramorum.
    Kroon LP; Verstappen EC; Kox LF; Flier WG; Bonants PJ
    Phytopathology; 2004 Jun; 94(6):613-20. PubMed ID: 18943486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Survival, dispersal, and potential soil-mediated suppression of Phytophthora ramorum in a California redwood-tanoak forest.
    Fichtner EJ; Lynch SC; Rizzo DM
    Phytopathology; 2009 May; 99(5):608-19. PubMed ID: 19351257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Population dynamics of aerial and terrestrial populations of Phytophthora ramorum in a California forest under different climatic conditions.
    Eyre CA; Kozanitas M; Garbelotto M
    Phytopathology; 2013 Nov; 103(11):1141-52. PubMed ID: 23745672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of land-cover change on the spread of an invasive forest pathogen.
    Meentemeyer RK; Rank NE; Anacker BL; Rizzo DM; Cushman JH
    Ecol Appl; 2008 Jan; 18(1):159-71. PubMed ID: 18372563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid detection of Phytophthora ramorum and P. kernoviae by two-minute DNA extraction followed by isothermal amplification and amplicon detection by generic lateral flow device.
    Tomlinson JA; Dickinson MJ; Boonham N
    Phytopathology; 2010 Feb; 100(2):143-9. PubMed ID: 20055648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitotic Recombination and Rapid Genome Evolution in the Invasive Forest Pathogen
    Dale AL; Feau N; Everhart SE; Dhillon B; Wong B; Sheppard J; Bilodeau GJ; Brar A; Tabima JF; Shen D; Brasier CM; Tyler BM; Grünwald NJ; Hamelin RC
    mBio; 2019 Mar; 10(2):. PubMed ID: 30862749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.