BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 17851171)

  • 1. RF-magnetron sputtering technique for producing hydroxyapatite coating film on various substrates.
    Wan T; Aoki H; Hikawa J; Lee JH
    Biomed Mater Eng; 2007; 17(5):291-7. PubMed ID: 17851171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal chemistry of hydroxyapatite deposited on titanium by sputtering technique.
    Ozeki K; Yuhta T; Aoki H; Nishimura I; Fukui Y
    Biomed Mater Eng; 2000; 10(3-4):221-7. PubMed ID: 11202150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of discharge power level on the properties of hydroxyapatite films deposited on Ti6A14V with RF magnetron sputtering.
    van Dijk K; Schaeken HG; Wolke JC; Marée CH; Habraken FH; Verhoeven J; Jansen JA
    J Biomed Mater Res; 1995 Feb; 29(2):269-76. PubMed ID: 7738075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone bonding strength of sputtered hydroxyapatite films subjected to a low temperature hydrothermal treatment.
    Ozeki K; Mishima A; Yuhta T; Fukui Y; Aoki H
    Biomed Mater Eng; 2003; 13(4):451-63. PubMed ID: 14646059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone response to titanium implants coated with thin sputtered HA film subject to hydrothermal treatment and implanted in the canine mandible.
    Ozeki K; Okuyama Y; Fukui Y; Aoki H
    Biomed Mater Eng; 2006; 16(4):243-51. PubMed ID: 16971742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates.
    Blind O; Klein LH; Dailey B; Jordan L
    Dent Mater; 2005 Nov; 21(11):1017-24. PubMed ID: 15882899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering.
    Mello A; Hong Z; Rossi AM; Luan L; Farina M; Querido W; Eon J; Terra J; Balasundaram G; Webster T; Feinerman A; Ellis DE; Ketterson JB; Ferreira CL
    Biomed Mater; 2007 Jun; 2(2):67-77. PubMed ID: 18458438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Ni release from NiTi alloy by hydroxyapatite, alumina, and titanium sputtered coatings.
    Ozeki K; Yuhta T; Aoki H; Fukui Y
    Biomed Mater Eng; 2003; 13(3):271-9. PubMed ID: 12883176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteoblast proliferation on hydroxyapatite coated substrates prepared by right angle magnetron sputtering.
    Hong Z; Mello A; Yoshida T; Luan L; Stern PH; Rossi A; Ellis DE; Ketterson JB
    J Biomed Mater Res A; 2010 Jun; 93(3):878-85. PubMed ID: 19705463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sol-gel derived fluor-hydroxyapatite biocoatings on zirconia substrate.
    Kim HW; Kong YM; Bae CJ; Noh YJ; Kim HE
    Biomaterials; 2004 Jul; 25(15):2919-26. PubMed ID: 14967523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissolution behavior and in vitro evaluation of sputtered hydroxyapatite films subject to a low temperature hydrothermal treatment.
    Ozeki K; Aoki H; Fukui Y
    J Biomed Mater Res A; 2006 Mar; 76(3):605-13. PubMed ID: 16278871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a hydroxyapatite sputtered film subject to hydrothermal treatment using FE-SEM and STEM.
    Ozeki K; Aoki H; Masuzawa T
    Biomed Mater Eng; 2011; 21(3):179-89. PubMed ID: 22072082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of plasma-sprayed HA/SiO(2) coatings for biomedical application.
    Morks MF
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):105-11. PubMed ID: 19627776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of calcium phosphate films for coating on titanium substrates heated up to 773 K by RF magnetron sputtering and their evaluations.
    Ueda K; Narushima T; Goto T; Taira M; Katsube T
    Biomed Mater; 2007 Sep; 2(3):S160-6. PubMed ID: 18458462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants.
    Kim HW; Kim HE; Knowles JC
    Biomaterials; 2004 Aug; 25(17):3351-8. PubMed ID: 15020107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.
    Huang Y; Wang Y; Ning C; Nan K; Han Y
    Biomed Mater; 2007 Sep; 2(3):196-201. PubMed ID: 18458472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adhesion failure behavior of sputtered calcium phosphate thin film coatings evaluated using microscratch testing.
    Toque JA; Herliansyah MK; Hamdi M; Ide-Ektessabi A; Sopyan I
    J Mech Behav Biomed Mater; 2010 May; 3(4):324-30. PubMed ID: 20346900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of hydroxyapatite-titanium at elevated temperature in vacuum environment.
    Yang Y; Kim KH; Agrawal CM; Ong JL
    Biomaterials; 2004 Jul; 25(15):2927-32. PubMed ID: 14967524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel ordered nano hydroxyapatite coating electrochemically deposited on titanium substrate.
    Hu R; Lin CJ; Shi HY
    J Biomed Mater Res A; 2007 Mar; 80(3):687-92. PubMed ID: 17109412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological performance of chemical hydroxyapatite coating associated with implant surface modification by laser beam: biomechanical study in rabbit tibias.
    Faeda RS; Tavares HS; Sartori R; Guastaldi AC; Marcantonio E
    J Oral Maxillofac Surg; 2009 Aug; 67(8):1706-15. PubMed ID: 19615586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.