These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 17851419)
1. Identification of the products of oxidation of quercetin by air oxygen at ambient temperature. Zenkevich IG; Eshchenko AY; Makarova SV; Vitenberg AG; Dobryakov YG; Utsal VA Molecules; 2007 Mar; 12(3):654-72. PubMed ID: 17851419 [TBL] [Abstract][Full Text] [Related]
2. Heat-induced, metal-catalyzed oxidative degradation of quercetin and rutin (Quercetin 3-O-rhamnosylglucoside) in aqueous model systems. Makris DP; Rossiter JT J Agric Food Chem; 2000 Sep; 48(9):3830-8. PubMed ID: 10995278 [TBL] [Abstract][Full Text] [Related]
3. Redox reactions obtained by gamma irradiation of quercetin methanol solution are similar to in vivo metabolism. Marfak A; Trouillas P; Allais DP; Calliste CA; Duroux JL Radiat Res; 2003 Feb; 159(2):218-27. PubMed ID: 12537527 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of quercetin oxidation by electrochemical, enzymatic, autoxidation, and free radical generation techniques: a mechanistic study. Zhou A; Sadik OA J Agric Food Chem; 2008 Dec; 56(24):12081-91. PubMed ID: 19053369 [TBL] [Abstract][Full Text] [Related]
5. Effect of thermal processing on the flavonols rutin and quercetin. Buchner N; Krumbein A; Rohn S; Kroh LW Rapid Commun Mass Spectrom; 2006; 20(21):3229-35. PubMed ID: 17016866 [TBL] [Abstract][Full Text] [Related]
7. Flavonoid oxidation by the radical generator AIBN: a unified mechanism for quercetin radical scavenging. Krishnamachari V; Levine LH; Paré PW J Agric Food Chem; 2002 Jul; 50(15):4357-63. PubMed ID: 12105970 [TBL] [Abstract][Full Text] [Related]
8. Two-electron electrochemical oxidation of quercetin and kaempferol changes only the flavonoid C-ring. Jørgensen LV; Cornett C; Justesen U; Skibsted LH; Dragsted LO Free Radic Res; 1998 Oct; 29(4):339-50. PubMed ID: 9860049 [TBL] [Abstract][Full Text] [Related]
9. Oxidative degradation of quercetin with hydrogen peroxide using continuous-flow kinetic electrospray-ion trap-time-of-flight mass spectrometry. Barnes JS; Schug KA J Agric Food Chem; 2014 May; 62(19):4322-31. PubMed ID: 24758471 [TBL] [Abstract][Full Text] [Related]
10. Spontaneous hydrolysis and dehydration of dehydroascorbic acid in aqueous solution. Deutsch JC Anal Biochem; 1998 Jul; 260(2):223-9. PubMed ID: 9657882 [TBL] [Abstract][Full Text] [Related]
11. On the stability of the bioactive flavonoids quercetin and luteolin under oxygen-free conditions. Ramešová S; Sokolová R; Degano I; Bulíčková J; Zabka J; Gál M Anal Bioanal Chem; 2012 Jan; 402(2):975-82. PubMed ID: 22057718 [TBL] [Abstract][Full Text] [Related]
12. Copper-catalyzed aerobic oxidative synthesis of α-ketoamides from methyl ketones, amines and NIS at room temperature. Zhang J; Wei Y; Lin S; Liang F; Liu P Org Biomol Chem; 2012 Dec; 10(46):9237-42. PubMed ID: 23104322 [TBL] [Abstract][Full Text] [Related]
13. The photodegradation of quercetin: relation to oxidation. Dall'Acqua S; Miolo G; Innocenti G; Caffieri S Molecules; 2012 Jul; 17(8):8898-907. PubMed ID: 22836209 [TBL] [Abstract][Full Text] [Related]
14. New degradation product of spiradoline mesylate in aqueous solution: formation of an imidazolidine ring. Ogata M; Shimizu R; Abe H J Pharm Sci; 1993 Jan; 82(1):91-4. PubMed ID: 8429499 [TBL] [Abstract][Full Text] [Related]
15. Quercetin 2,4-Dioxygenase Activates Dioxygen in a Side-On O2-Ni Complex. Jeoung JH; Nianios D; Fetzner S; Dobbek H Angew Chem Int Ed Engl; 2016 Mar; 55(10):3281-4. PubMed ID: 26846734 [TBL] [Abstract][Full Text] [Related]
16. Identification of 3,4-dihydroxy-2-oxo-butanal (L-threosone) as an intermediate compound in oxidative degradation of dehydro-L-ascorbic acid and 2,3-diketo-L-gulonic acid in a deuterium oxide phosphate buffer. Nishikawa Y; Toyoshima Y; Kurata T Biosci Biotechnol Biochem; 2001 Aug; 65(8):1707-12. PubMed ID: 11577707 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of the solution oxidation of rofecoxib under alkaline conditions. Harmon PA; Biffar S; Pitzenberger SM; Reed RA Pharm Res; 2005 Oct; 22(10):1716-26. PubMed ID: 16180130 [TBL] [Abstract][Full Text] [Related]
18. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air. Huang X; Li X; Zou M; Song S; Tang C; Yuan Y; Jiao N J Am Chem Soc; 2014 Oct; 136(42):14858-65. PubMed ID: 25251943 [TBL] [Abstract][Full Text] [Related]
19. Unique ability of BiOBr to decarboxylate d-Glu and d-MeAsp in the photocatalytic degradation of microcystin-LR in water. Yanfen F; Yingping H; Jing Y; Pan W; Genwei C Environ Sci Technol; 2011 Feb; 45(4):1593-600. PubMed ID: 21247106 [TBL] [Abstract][Full Text] [Related]
20. Interaction of quercetin with copper ions: complexation, oxidation and reactivity towards radicals. Pękal A; Biesaga M; Pyrzynska K Biometals; 2011 Feb; 24(1):41-9. PubMed ID: 20835752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]