These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 17851625)

  • 1. Surface modification of gold nanorods with synthetic cationic lipids.
    Niidome Y; Honda K; Higashimoto K; Kawazumi H; Yamada S; Nakashima N; Sasaki Y; Ishida Y; Kikuchi J
    Chem Commun (Camb); 2007 Sep; (36):3777-9. PubMed ID: 17851625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modification of gold nanorods through a place exchange reaction inside an ionic exchange resin.
    Dai Q; Coutts J; Zou J; Huo Q
    Chem Commun (Camb); 2008 Jul; (25):2858-60. PubMed ID: 18566704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of cetyltrimethylammonium bromide-capped gold nanorods to make molecular probes.
    Yu C; Varghese L; Irudayaraj J
    Langmuir; 2007 Aug; 23(17):9114-9. PubMed ID: 17636999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free biosensing with lipid-functionalized gold nanorods.
    Castellana ET; Gamez RC; Russell DH
    J Am Chem Soc; 2011 Mar; 133(12):4182-5. PubMed ID: 21384858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of monolayer protected lipophilic gold nanorods on a glass surface.
    Ori G; Gentili D; Cavallini M; Franchini MC; Zapparoli M; Montorsi M; Siligardi C
    Nanotechnology; 2012 Feb; 23(5):055605. PubMed ID: 22236659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step functionalized gold nanorods as intracellular probe with improved SERS performance and reduced cytotoxicity.
    Wang Z; Zong S; Yang J; Song C; Li J; Cui Y
    Biosens Bioelectron; 2010 Sep; 26(1):241-7. PubMed ID: 20637591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordination chemistry approach for the end-to-end assembly of gold nanorods.
    Selvakannan PR; Dumas E; Dumur F; Péchoux C; Beaunier P; Etcheberry A; Sécheresse F; Remita H; Mayer CR
    J Colloid Interface Sci; 2010 Sep; 349(1):93-7. PubMed ID: 20541215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanorods grown on microgels leading to hexagonal nanostructures.
    Kumar VR; Samal AK; Sreeprasad TS; Pradeep T
    Langmuir; 2007 Aug; 23(17):8667-9. PubMed ID: 17637011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and optical properties of worm-like gold nanorods.
    Huang H; He C; Zeng Y; Xia X; Yu X; Yi P; Chen Z
    J Colloid Interface Sci; 2008 Jun; 322(1):136-42. PubMed ID: 18400232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size tunable gold nanorods evenly distributed in the channels of mesoporous silica.
    Li Z; Kübel C; Pârvulescu VI; Richards R
    ACS Nano; 2008 Jun; 2(6):1205-12. PubMed ID: 19206338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of gold nanorods induced by intermolecular interactions of surface-anchored lipids.
    Nakashima H; Furukawa K; Kashimura Y; Torimitsu K
    Langmuir; 2008 Jun; 24(11):5654-8. PubMed ID: 18442278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. End-to-end assembly of gold nanorods by means of oligonucleotide-mercury(II) molecular recognition.
    Wang Y; Li YF; Wang J; Sang Y; Huang CZ
    Chem Commun (Camb); 2010 Feb; 46(8):1332-4. PubMed ID: 20449294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods.
    Ni W; Kou X; Yang Z; Wang J
    ACS Nano; 2008 Apr; 2(4):677-86. PubMed ID: 19206598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces.
    Horiguchi Y; Honda K; Kato Y; Nakashima N; Niidome Y
    Langmuir; 2008 Oct; 24(20):12026-31. PubMed ID: 18759472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation.
    Li X; Kao FJ; Chuang CC; He S
    Opt Express; 2010 May; 18(11):11335-46. PubMed ID: 20588995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity.
    Takahashi H; Niidome Y; Niidome T; Kaneko K; Kawasaki H; Yamada S
    Langmuir; 2006 Jan; 22(1):2-5. PubMed ID: 16378388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells.
    Zhu J; Yong KT; Roy I; Hu R; Ding H; Zhao L; Swihart MT; He GS; Cui Y; Prasad PN
    Nanotechnology; 2010 Jul; 21(28):285106. PubMed ID: 20585168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical and biological sensing capabilities of Au2S/AuAgS coated gold nanorods.
    Huang H; Liu X; Zeng Y; Yu X; Liao B; Yi P; Chu PK
    Biomaterials; 2009 Oct; 30(29):5622-30. PubMed ID: 19625079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Azide-derivatized gold nanorods: functional materials for "click" chemistry.
    Gole A; Murphy CJ
    Langmuir; 2008 Jan; 24(1):266-72. PubMed ID: 18052398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced porous gold nanofibers for highly efficient and stable molecular sensing platforms.
    Lee HO; Kim EM; Yu H; Jung JS; Chae WS
    Nanotechnology; 2009 Aug; 20(32):325604. PubMed ID: 19620749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.