These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17851667)

  • 1. Ontogeny of flight initiation in the fly Drosophila melanogaster: implications for the giant fibre system.
    Hammond S; O'Shea M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Nov; 193(11):1125-37. PubMed ID: 17851667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escape flight initiation in the fly.
    Hammond S; O'Shea M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Apr; 193(4):471-6. PubMed ID: 17221263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance trade-offs in the flight initiation of Drosophila.
    Card G; Dickinson M
    J Exp Biol; 2008 Feb; 211(Pt 3):341-53. PubMed ID: 18203989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber system.
    Phelan P; Nakagawa M; Wilkin MB; Moffat KG; O'Kane CJ; Davies JA; Bacon JP
    J Neurosci; 1996 Feb; 16(3):1101-13. PubMed ID: 8558239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flight initiations in Drosophila melanogaster are mediated by several distinct motor patterns.
    Trimarchi JR; Schneiderman AM
    J Comp Physiol A; 1995 Mar; 176(3):355-64. PubMed ID: 7707271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A spike-timing mechanism for action selection.
    von Reyn CR; Breads P; Peek MY; Zheng GZ; Williamson WR; Yee AL; Leonardo A; Card GM
    Nat Neurosci; 2014 Jul; 17(7):962-70. PubMed ID: 24908103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wing and body motion during flight initiation in Drosophila revealed by automated visual tracking.
    Fontaine EI; Zabala F; Dickinson MH; Burdick JW
    J Exp Biol; 2009 May; 212(Pt 9):1307-23. PubMed ID: 19376952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the giant fiber neuron of Drosophila melanogaster.
    Allen MJ; Drummond JA; Moffat KG
    J Comp Neurol; 1998 Aug; 397(4):519-31. PubMed ID: 9699913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Making an escape: development and function of the Drosophila giant fibre system.
    Allen MJ; Godenschwege TA; Tanouye MA; Phelan P
    Semin Cell Dev Biol; 2006 Feb; 17(1):31-41. PubMed ID: 16378740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flies dynamically anti-track, rather than ballistically escape, aversive odor during flight.
    Wasserman S; Lu P; Aptekar JW; Frye MA
    J Exp Biol; 2012 Aug; 215(Pt 16):2833-40. PubMed ID: 22837456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel assay to evaluate action selection in escape behavior.
    Goodman DP; Eldredge A; von Reyn CR
    J Neurosci Methods; 2018 Jul; 304():154-161. PubMed ID: 29715480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different neural pathways coordinate Drosophila flight initiations evoked by visual and olfactory stimuli.
    Trimarchi JR; Schneiderman AM
    J Exp Biol; 1995 May; 198(Pt 5):1099-104. PubMed ID: 8627145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visually mediated motor planning in the escape response of Drosophila.
    Card G; Dickinson MH
    Curr Biol; 2008 Sep; 18(17):1300-7. PubMed ID: 18760606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptogenesis in the giant-fibre system of Drosophila: interaction of the giant fibre and its major motorneuronal target.
    Jacobs K; Todman MG; Allen MJ; Davies JA; Bacon JP
    Development; 2000 Dec; 127(23):5203-12. PubMed ID: 11060245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetic stimulation of escape behavior in Drosophila melanogaster.
    de Vries SE; Clandinin T
    J Vis Exp; 2013 Jan; (71):. PubMed ID: 23380919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of two P-element enhancer-trap insertion lines that show expression in the giant fibre neuron of Drosophila melanogaster.
    Allen MJ; Drummond JA; Sweetman DJ; Moffat KG
    Genes Brain Behav; 2007 Jun; 6(4):347-58. PubMed ID: 16879616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of flight and associated neuronal rhythmicity in inositol 1,4,5-trisphosphate receptor mutants of Drosophila.
    Banerjee S; Lee J; Venkatesh K; Wu CF; Hasan G
    J Neurosci; 2004 Sep; 24(36):7869-78. PubMed ID: 15356199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shaking B Mediates Synaptic Coupling between Auditory Sensory Neurons and the Giant Fiber of Drosophila melanogaster.
    Pézier AP; Jezzini SH; Bacon JP; Blagburn JM
    PLoS One; 2016; 11(4):e0152211. PubMed ID: 27043822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shaking-B misexpression increases the formation of gap junctions but not chemical synapses between auditory sensory neurons and the giant fiber of Drosophila melanogaster.
    Jezzini SH; Merced A; Blagburn JM
    PLoS One; 2018; 13(8):e0198710. PubMed ID: 30118493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.
    Frazier MR; Harrison JF; Kirkton SD; Roberts SP
    J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.