These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 17852066)
1. Species-specific engineered antifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids. Schumacher JF; Aldred N; Callow ME; Finlay JA; Callow JA; Clare AS; Brennan AB Biofouling; 2007; 23(5-6):307-17. PubMed ID: 17852066 [TBL] [Abstract][Full Text] [Related]
2. Engineered antifouling microtopographies - effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Schumacher JF; Carman ML; Estes TG; Feinberg AW; Wilson LH; Callow ME; Callow JA; Finlay JA; Brennan AB Biofouling; 2007; 23(1-2):55-62. PubMed ID: 17453729 [TBL] [Abstract][Full Text] [Related]
3. Engineered nanoforce gradients for inhibition of settlement (attachment) of swimming algal spores. Schumacher JF; Long CJ; Callow ME; Finlay JA; Callow JA; Brennan AB Langmuir; 2008 May; 24(9):4931-7. PubMed ID: 18361532 [TBL] [Abstract][Full Text] [Related]
4. Attachment strength is a key factor in the selection of surfaces by barnacle cyprids (Balanus amphitrite) during settlement. Aldred N; Scardino A; Cavaco A; de Nys R; Clare AS Biofouling; 2010; 26(3):287-99. PubMed ID: 20087801 [TBL] [Abstract][Full Text] [Related]
5. A model that predicts the attachment behavior of Ulva linza zoospores on surface topography. Long CJ; Schumacher JF; Robinson PA; Finlay JA; Callow ME; Callow JA; Brennan AB Biofouling; 2010 May; 26(4):411-9. PubMed ID: 20191401 [TBL] [Abstract][Full Text] [Related]
6. Antifouling potential of lubricious, micro-engineered, PDMS elastomers against zoospores of the green fouling alga Ulva (Enteromorpha). Hoipkemeier-Wilson L; Schumacher JF; Carman ML; Gibson AL; Feinberg AW; Callow ME; Finlay JA; Callow JA; Brennan AB Biofouling; 2004 Feb; 20(1):53-63. PubMed ID: 15079893 [TBL] [Abstract][Full Text] [Related]
7. Hybrid xerogel films as novel coatings for antifouling and fouling release. Tang Y; Finlay JA; Kowalke GL; Meyer AE; Bright FV; Callow ME; Callow JA; Wendt DE; Detty MR Biofouling; 2005; 21(1):59-71. PubMed ID: 16019392 [TBL] [Abstract][Full Text] [Related]
8. Settlement behavior of zoospores of Ulva linza during surface selection studied by digital holographic microscopy. Heydt M; Pettitt ME; Cao X; Callow ME; Callow JA; Grunze M; Rosenhahn A Biointerphases; 2012 Dec; 7(1-4):33. PubMed ID: 22589076 [TBL] [Abstract][Full Text] [Related]
9. Roughness-dependent removal of settled spores of the green alga Ulva (syn. Enteromorpha) exposed to hydrodynamic forces from a water jet. Granhag LM; Finlay JA; Jonsson PR; Callow JA; Callow ME Biofouling; 2004 Apr; 20(2):117-22. PubMed ID: 15203965 [TBL] [Abstract][Full Text] [Related]
10. Engineered antifouling microtopographies--correlating wettability with cell attachment. Carman ML; Estes TG; Feinberg AW; Schumacher JF; Wilkerson W; Wilson LH; Callow ME; Callow JA; Brennan AB Biofouling; 2006; 22(1-2):11-21. PubMed ID: 16551557 [TBL] [Abstract][Full Text] [Related]
11. Anomalous settlement behavior of Ulva linza zoospores on cationic oligopeptide surfaces. Ederth T; Nygren P; Pettitt ME; Ostblom M; Du C-; Broo K; Callow ME; Callow J; Liedberg B Biofouling; 2008; 24(4):303-12. PubMed ID: 18589494 [TBL] [Abstract][Full Text] [Related]
12. Engineered antifouling microtopographies: kinetic analysis of the attachment of zoospores of the green alga Ulva to silicone elastomers. Cooper SP; Finlay JA; Cone G; Callow ME; Callow JA; Brennan AB Biofouling; 2011 Sep; 27(8):881-91. PubMed ID: 21882899 [TBL] [Abstract][Full Text] [Related]
13. The development of a marine natural product-based antifouling paint. Burgess JG; Boyd KG; Armstrong E; Jiang Z; Yan L; Berggren M; May U; Pisacane T; Granmo A; Adams DR Biofouling; 2003 Apr; 19 Suppl():197-205. PubMed ID: 14618721 [TBL] [Abstract][Full Text] [Related]
14. The control of marine biofouling on xerogel surfaces with nanometer-scale topography. Gunari N; Brewer LH; Bennett SM; Sokolova A; Kraut ND; Finlay JA; Meyer AE; Walker GC; Wendt DE; Callow ME; Callow JA; Bright FV; Detty MR Biofouling; 2011 Feb; 27(2):137-49. PubMed ID: 21213155 [TBL] [Abstract][Full Text] [Related]
15. Slippery liquid-infused porous surfaces showing marine antibiofouling properties. Xiao L; Li J; Mieszkin S; Di Fino A; Clare AS; Callow ME; Callow JA; Grunze M; Rosenhahn A; Levkin PA ACS Appl Mater Interfaces; 2013 Oct; 5(20):10074-80. PubMed ID: 24067279 [TBL] [Abstract][Full Text] [Related]
16. Fluorinated/siloxane copolymer blends for fouling release: chemical characterisation and biological evaluation with algae and barnacles. Marabotti I; Morelli A; Orsini LM; Martinelli E; Galli G; Chiellini E; Lien EM; Pettitt ME; Callow ME; Callow JA; Conlan SL; Mutton RJ; Clare AS; Kocijan A; Donik C; Jenko M Biofouling; 2009; 25(6):481-93. PubMed ID: 19373571 [TBL] [Abstract][Full Text] [Related]
17. Correlation between surface chemistry and settlement behaviour in barnacle cyprids (Balanus improvisus). Di Fino A; Petrone L; Aldred N; Ederth T; Liedberg B; Clare AS Biofouling; 2014 Feb; 30(2):143-52. PubMed ID: 24313326 [TBL] [Abstract][Full Text] [Related]
19. Engineered antifouling microtopographies: the role of Reynolds number in a model that predicts attachment of zoospores of Ulva and cells of Cobetia marina. Magin CM; Long CJ; Cooper SP; Ista LK; López GP; Brennan AB Biofouling; 2010 Aug; 26(6):719-27. PubMed ID: 20706891 [TBL] [Abstract][Full Text] [Related]
20. Activity of commercial enzymes on settlement and adhesion of cypris larvae of the barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta. Pettitt ME; Henry SL; Callow ME; Callow JA; Clare AS Biofouling; 2004 Dec; 20(6):299-311. PubMed ID: 15804714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]