These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 17852176)

  • 1. Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues - II: prediction of reaction force history of meniscal cartilage specimens.
    Taylor ZA; Kirk TB; Miller K
    Comput Methods Biomech Biomed Engin; 2007 Oct; 10(5):327-36. PubMed ID: 17852176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues--I: development of a microstructural model.
    Taylor ZA; Kirk TB; Miller K
    Comput Methods Biomech Biomed Engin; 2007 Aug; 10(4):307-16. PubMed ID: 17671863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model.
    Julkunen P; Kiviranta P; Wilson W; Jurvelin JS; Korhonen RK
    J Biomech; 2007; 40(8):1862-70. PubMed ID: 17052722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress-relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure.
    Julkunen P; Wilson W; Jurvelin JS; Rieppo J; Qu CJ; Lammi MJ; Korhonen RK
    J Biomech; 2008; 41(9):1978-86. PubMed ID: 18490021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A finite element analysis methodology for representing the articular cartilage functional structure.
    Olsen S; Oloyede A
    Comput Methods Biomech Biomed Engin; 2002 Dec; 5(6):377-86. PubMed ID: 12468419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biphasic viscohyperelastic fibril-reinforced model for articular cartilage: formulation and comparison with experimental data.
    García JJ; Cortés DH
    J Biomech; 2007; 40(8):1737-44. PubMed ID: 17014853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards an analytical model of soft biological tissues.
    Federico S; Herzog W
    J Biomech; 2008 Dec; 41(16):3309-13. PubMed ID: 18922533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study.
    Julkunen P; Korhonen RK; Herzog W; Jurvelin JS
    Med Eng Phys; 2008 May; 30(4):506-15. PubMed ID: 17629536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse analysis of constitutive models: biological soft tissues.
    Lei F; Szeri AZ
    J Biomech; 2007; 40(4):936-40. PubMed ID: 16730739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bimodular theory for finite deformations: Comparison of orthotropic second-order and exponential stress constitutive equations for articular cartilage.
    Klisch SM
    Biomech Model Mechanobiol; 2006 Jun; 5(2-3):90-101. PubMed ID: 16598492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time and depth dependent Poisson's ratio of cartilage explained by an inhomogeneous orthotropic fiber embedded biphasic model.
    Chegini S; Ferguson SJ
    J Biomech; 2010 Jun; 43(9):1660-6. PubMed ID: 20392445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of tissue composition and structure to mechanical response of articular cartilage under different loading geometries and strain rates.
    Julkunen P; Jurvelin JS; Isaksson H
    Biomech Model Mechanobiol; 2010 Apr; 9(2):237-45. PubMed ID: 19680701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of freezing on the mechanical properties of articular cartilage.
    Kennedy EA; Tordonado DS; Duma SM
    Biomed Sci Instrum; 2007; 43():342-7. PubMed ID: 17487105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The functional environment of chondrocytes within cartilage subjected to compressive loading: a theoretical and experimental approach.
    Wang CC; Guo XE; Sun D; Mow VC; Ateshian GA; Hung CT
    Biorheology; 2002; 39(1-2):11-25. PubMed ID: 12082263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in mechanical behaviour of articular cartilage due to changes in depth varying material properties--a nonhomogeneous poroelastic model study.
    Li LP; Shirazi-Adl A; Buschmann MD
    Comput Methods Biomech Biomed Engin; 2002 Feb; 5(1):45-52. PubMed ID: 12186733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.