These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 17852177)
1. Spinal stability and role of passive stiffness in dynamic squat and stoop lifts. Bazrgari B; Shirazi-Adl A Comput Methods Biomech Biomed Engin; 2007 Oct; 10(5):351-60. PubMed ID: 17852177 [TBL] [Abstract][Full Text] [Related]
2. Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks. Arjmand N; Shirazi-Adl A; Bazrgari B Clin Biomech (Bristol); 2006 Aug; 21(7):668-75. PubMed ID: 16678948 [TBL] [Abstract][Full Text] [Related]
3. Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads. Bazrgari B; Shirazi-Adl A; Arjmand N Eur Spine J; 2007 May; 16(5):687-99. PubMed ID: 17103232 [TBL] [Abstract][Full Text] [Related]
4. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models. Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C Clin Biomech (Bristol); 2009 Aug; 24(7):533-41. PubMed ID: 19493597 [TBL] [Abstract][Full Text] [Related]
5. Trunk response analysis under sudden forward perturbations using a kinematics-driven model. Bazrgari B; Shirazi-Adl A; Larivière C J Biomech; 2009 Jun; 42(9):1193-200. PubMed ID: 19375707 [TBL] [Abstract][Full Text] [Related]
6. Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element. Shirazi-Adl A J Biomech; 2006; 39(2):267-75. PubMed ID: 16321628 [TBL] [Abstract][Full Text] [Related]
7. Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions. Arjmand N; Shirazi-Adl A J Biomech; 2006; 39(3):510-21. PubMed ID: 16389091 [TBL] [Abstract][Full Text] [Related]
8. Effect of load position on muscle forces, internal loads and stability of the human spine in upright postures. El-Rich M; Shirazi-Adl A Comput Methods Biomech Biomed Engin; 2005 Dec; 8(6):359-68. PubMed ID: 16393873 [TBL] [Abstract][Full Text] [Related]
9. Seated whole body vibrations with high-magnitude accelerations--relative roles of inertia and muscle forces. Bazrgari B; Shirazi-Adl A; Kasra M J Biomech; 2008 Aug; 41(12):2639-46. PubMed ID: 18672242 [TBL] [Abstract][Full Text] [Related]
10. Foot positioning instruction, initial vertical load position and lifting technique: effects on low back loading. Kingma I; Bosch T; Bruins L; van Dieën JH Ergonomics; 2004 Oct; 47(13):1365-85. PubMed ID: 15513714 [TBL] [Abstract][Full Text] [Related]
11. Effect of mental processing on low back load while lifting an object. Katsuhira J; Matsudaira K; Iwakiri K; Kimura Y; Ohashi T; Ono R; Sugita S; Fukuda K; Abe S; Maruyama H Spine (Phila Pa 1976); 2013 Jun; 38(13):E832-9. PubMed ID: 23722573 [TBL] [Abstract][Full Text] [Related]
12. Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting. Arjmand N; Ekrami O; Shirazi-Adl A; Plamondon A; Parnianpour M J Biomech; 2013 May; 46(8):1454-62. PubMed ID: 23541615 [TBL] [Abstract][Full Text] [Related]
13. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data. Rohlmann A; Bauer L; Zander T; Bergmann G; Wilke HJ J Biomech; 2006; 39(6):981-9. PubMed ID: 16549091 [TBL] [Abstract][Full Text] [Related]
14. The time-varying response of the in vivo lumbar spine to dynamic repetitive flexion. Parkinson RJ; Beach TA; Callaghan JP Clin Biomech (Bristol); 2004 May; 19(4):330-6. PubMed ID: 15109751 [TBL] [Abstract][Full Text] [Related]
15. A direct comparison of spine rotational stiffness and dynamic spine stability during repetitive lifting tasks. Graham RB; Brown SH J Biomech; 2012 Jun; 45(9):1593-600. PubMed ID: 22542218 [TBL] [Abstract][Full Text] [Related]
16. PLAD (personal lift assistive device) stiffness affects the lumbar flexion/extension moment and the posterior chain EMG during symmetrical lifting tasks. Frost DM; Abdoli-E M; Stevenson JM J Electromyogr Kinesiol; 2009 Dec; 19(6):e403-12. PubMed ID: 19200755 [TBL] [Abstract][Full Text] [Related]
17. Spine loading during asymmetric lifting using one versus two hands. Marras WS; Davis KG Ergonomics; 1998 Jun; 41(6):817-34. PubMed ID: 9629066 [TBL] [Abstract][Full Text] [Related]
18. Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities. Arjmand N; Plamondon A; Shirazi-Adl A; Parnianpour M; Larivière C Clin Biomech (Bristol); 2012 Jul; 27(6):537-44. PubMed ID: 22265249 [TBL] [Abstract][Full Text] [Related]
19. Trunk active response and spinal forces in sudden forward loading: analysis of the role of perturbation load and pre-perturbation conditions by a kinematics-driven model. Shahvarpour A; Shirazi-Adl A; Larivière C; Bazrgari B J Biomech; 2015 Jan; 48(1):44-52. PubMed ID: 25476501 [TBL] [Abstract][Full Text] [Related]
20. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Goel VK; Kong W; Han JS; Weinstein JN; Gilbertson LG Spine (Phila Pa 1976); 1993 Sep; 18(11):1531-41. PubMed ID: 8235826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]