BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 17852182)

  • 1. A comparison of non-standard solvers for ODEs describing cellular reactions in the heart.
    Maclachlan MC; Sundnes J; Spiteri RJ
    Comput Methods Biomech Biomed Engin; 2007 Oct; 10(5):317-26. PubMed ID: 17852182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the performance of an implicit-explicit Runge-Kutta method in models of cardiac electrical activity.
    Spiteri RJ; Dean RC
    IEEE Trans Biomed Eng; 2008 May; 55(5):1488-95. PubMed ID: 18440894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient numerical technique for the solution of the monodomain and bidomain equations.
    Whiteley JP
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2139-47. PubMed ID: 17073318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso.
    Sundnes J; Lines GT; Tveito A
    Math Biosci; 2005 Apr; 194(2):233-48. PubMed ID: 15854678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parameter estimation in cardiac ionic models.
    Dokos S; Lovell NH
    Prog Biophys Mol Biol; 2004; 85(2-3):407-31. PubMed ID: 15142755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameter identifiability of cardiac ionic models using a novel CellML least squares optimization tool.
    Hui BB; Dokos S; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5307-10. PubMed ID: 18003205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATX-II effects on the apparent location of M cells in a computational model of a human left ventricular wedge.
    Dos Santos RW; Otaviano Campos F; Neumann Ciuffo L; Nygren A; Giles W; Koch H
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S86-S95. PubMed ID: 16686688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uniformization method for solving cardiac electrophysiology models based on the Markov-chain formulation.
    Gomes JM; Alvarenga A; Campos RS; Rocha BM; da Silva AP; dos Santos RW
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):600-8. PubMed ID: 25296402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stiffness analysis of cardiac electrophysiological models.
    Spiteri RJ; Dean RC
    Ann Biomed Eng; 2010 Dec; 38(12):3592-604. PubMed ID: 20582476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Computer simulations of electrical activity of the heart].
    Aliev RR
    Usp Fiziol Nauk; 2010; 41(3):44-63. PubMed ID: 20865937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling for cardiac excitation propagation based on the Nernst-Planck equation and homogenization.
    Okada J; Sugiura S; Hisada T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062701. PubMed ID: 23848709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study of cellular electrophysiology based on Noble98 dynamic model of ventricular action potential].
    Zhang H; Yang L; Jin Y; Zhang Z; Huang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):6-10. PubMed ID: 16532798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the isolated cardiac myocyte.
    Puglisi JL; Wang F; Bers DM
    Prog Biophys Mol Biol; 2004; 85(2-3):163-78. PubMed ID: 15142742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of real-time numerical integration methods applied to dynamic clamp experiments.
    Butera RJ; McCarthy ML
    J Neural Eng; 2004 Dec; 1(4):187-94. PubMed ID: 15876638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of gap junctions in the propagation of the cardiac action potential.
    Rohr S
    Cardiovasc Res; 2004 May; 62(2):309-22. PubMed ID: 15094351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A gradient model of cardiac pacemaker myocytes.
    Lovell NH; Cloherty SL; Celler BG; Dokos S
    Prog Biophys Mol Biol; 2004; 85(2-3):301-23. PubMed ID: 15142749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional differences in rabbit atrial action potential properties: mechanisms, consequences and pharmacological implications.
    Aslanidi OV; Dewey RS; Morgan AR; Boyett MR; Zhang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():141-4. PubMed ID: 19162613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-current model for the dynamics of cardiac membrane.
    Mitchell CC; Schaeffer DG
    Bull Math Biol; 2003 Sep; 65(5):767-93. PubMed ID: 12909250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Computer simulation methods of cardiac electrophysiology].
    Jin Y; Yang L; Zhang H; Huang Y; Jiang D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):419-23. PubMed ID: 16706380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-specific cardiac electrophysiology models.
    Groenendaal W; Ortega FA; Kherlopian AR; Zygmunt AC; Krogh-Madsen T; Christini DJ
    PLoS Comput Biol; 2015 Apr; 11(4):e1004242. PubMed ID: 25928268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.