These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 17852687)

  • 1. Energy balance of locomotion with pedal-driven watercraft.
    Zamparo P; Carignani G; Plaino L; Sgalmuzzo B; Capelli C
    J Sports Sci; 2008 Jan; 26(1):75-81. PubMed ID: 17852687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy balance of human locomotion in water.
    Pendergast D; Zamparo P; di Prampero PE; Capelli C; Cerretelli P; Termin A; Craig A; Bushnell D; Paschke D; Mollendorf J
    Eur J Appl Physiol; 2003 Oct; 90(3-4):377-86. PubMed ID: 12955519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of drag on human locomotion in water.
    Pendergast D; Mollendorf J; Zamparo P; Termin A; Bushnell D; Paschke D
    Undersea Hyperb Med; 2005; 32(1):45-57. PubMed ID: 15796314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in propelling efficiency between competitive and triathlon swimmers.
    Toussaint HM
    Med Sci Sports Exerc; 1990 Jun; 22(3):409-15. PubMed ID: 2381311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explaining differences in the metabolic cost and efficiency of treadmill locomotion in children.
    Frost G; Bar-Or O; Dowling J; Dyson K
    J Sports Sci; 2002 Jun; 20(6):451-61. PubMed ID: 12137175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics of best performances in elite kayakers and canoeists.
    Buglione A; Lazzer S; Colli R; Introini E; Di Prampero PE
    Med Sci Sports Exerc; 2011 May; 43(5):877-84. PubMed ID: 20962692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of mountain bike suspensions on vibrations and off-road uphill performance.
    Faiss R; Praz M; Meichtry A; Gobelet C; Deriaz O
    J Sports Med Phys Fitness; 2007 Jun; 47(2):151-8. PubMed ID: 17557052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An energy balance of front crawl.
    Zamparo P; Pendergast DR; Mollendorf J; Termin A; Minetti AE
    Eur J Appl Physiol; 2005 May; 94(1-2):134-44. PubMed ID: 15702343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of swimming at maximal speeds in humans.
    Capelli C; Pendergast DR; Termin B
    Eur J Appl Physiol Occup Physiol; 1998 Oct; 78(5):385-93. PubMed ID: 9809837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanical efficiency of front crawl swimming.
    Toussaint HM; Knops W; De Groot G; Hollander AP
    Med Sci Sports Exerc; 1990 Jun; 22(3):402-8. PubMed ID: 2381310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological determinants of best performances in human locomotion.
    Capelli C
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):298-307. PubMed ID: 10483799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of drafting on hydrodynamic and metabolic responses in front crawl swimming.
    Janssen M; Wilson BD; Toussaint HM
    Med Sci Sports Exerc; 2009 Apr; 41(4):837-43. PubMed ID: 19276849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substantial energy expenditure for locomotion in ciliates verified by means of simultaneous measurement of oxygen consumption rate and swimming speed.
    Katsu-Kimura Y; Nakaya F; Baba SA; Mogami Y
    J Exp Biol; 2009 Jun; 212(Pt 12):1819-24. PubMed ID: 19482999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of the energy cost of front-crawl swimming in children.
    Poujade B; Hautier CA; Rouard A
    Eur J Appl Physiol; 2002 May; 87(1):1-6. PubMed ID: 12012070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy cost and efficiency of Venetian rowing on a traditional, flat hull boat (Bissa).
    Capelli C; Tarperi C; Schena F; Cevese A
    Eur J Appl Physiol; 2009 Mar; 105(4):653-61. PubMed ID: 19050909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency and effectiveness of stoop and squat lifting at different frequencies.
    Welbergen E; Kemper HC; Knibbe JJ; Toussaint HM; Clysen L
    Ergonomics; 1991 May; 34(5):613-24. PubMed ID: 1884712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Power, muscular work, and external forces in cycling.
    de Groot G; Welbergen E; Clijsen L; Clarijs J; Cabri J; Antonis J
    Ergonomics; 1994 Jan; 37(1):31-42. PubMed ID: 8112280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy cost and mechanical efficiency of riding a human-powered recumbent bicycle.
    Capelli C; Ardigo LP; Schena F; Zamparo P
    Ergonomics; 2008 Oct; 51(10):1565-75. PubMed ID: 18803095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human critical power-oxygen uptake relationship at different pedalling frequencies.
    Barker T; Poole DC; Noble ML; Barstow TJ
    Exp Physiol; 2006 May; 91(3):621-32. PubMed ID: 16527863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of dissolved oxygen level on the metabolic interaction between digestion and locomotion in juvenile southern catfish (Silurus meridionalis Chen).
    Zhang W; Cao ZD; Peng JL; Chen BJ; Fu SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Nov; 157(3):212-9. PubMed ID: 20601052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.