BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17853367)

  • 1. Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O-acetylserine (thiol)lyase under metal stress.
    Pajuelo E; Carrasco JA; Romero LC; Chamber MA; Gotor C
    Plant Biol (Stuttg); 2007 Sep; 9(5):672-81. PubMed ID: 17853367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implications of cysteine metabolism in the heavy metal response in Trichoderma harzianum and in three Fusarium species.
    Raspanti E; Cacciola SO; Gotor C; Romero LC; García I
    Chemosphere; 2009 Jun; 76(1):48-54. PubMed ID: 19298998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the phytoextraction potential of high biomass crop plants.
    Hernández-Allica J; Becerril JM; Garbisu C
    Environ Pollut; 2008 Mar; 152(1):32-40. PubMed ID: 17644228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EDTA-assisted Pb phytoextraction.
    Saifullah ; Meers E; Qadir M; de Caritat P; Tack FM; Du Laing G; Zia MH
    Chemosphere; 2009 Mar; 74(10):1279-91. PubMed ID: 19121533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation potential of Eichornia crassipes in metal-contaminated coastal water.
    Agunbiade FO; Olu-Owolabi BI; Adebowale KO
    Bioresour Technol; 2009 Oct; 100(19):4521-6. PubMed ID: 19414252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata.
    Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F
    Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals.
    Tassi E; Pouget J; Petruzzelli G; Barbafieri M
    Chemosphere; 2008 Mar; 71(1):66-73. PubMed ID: 18037469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How plants cope with cadmium: staking all on metabolism and gene expression.
    DalCorso G; Farinati S; Maistri S; Furini A
    J Integr Plant Biol; 2008 Oct; 50(10):1268-80. PubMed ID: 19017114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Jatropha curcas: a potential crop for phytoremediation of coal fly ash.
    Jamil S; Abhilash PC; Singh N; Sharma PN
    J Hazard Mater; 2009 Dec; 172(1):269-75. PubMed ID: 19640648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the heavy metal phytoextraction capacity of two forage species growing in an hydroponic environment.
    Bonfranceschi BA; Flocco CG; Donati ER
    J Hazard Mater; 2009 Jun; 165(1-3):366-71. PubMed ID: 19010592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential alterations of antioxidant defenses as bioindicators of mercury and cadmium toxicity in alfalfa.
    Sobrino-Plata J; Ortega-Villasante C; Flores-Cáceres ML; Escobar C; Del Campo FF; Hernández LE
    Chemosphere; 2009 Nov; 77(7):946-54. PubMed ID: 19732935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L.
    Najeeb U; Xu L; Ali S; Jilani G; Gong HJ; Shen WQ; Zhou WJ
    J Hazard Mater; 2009 Oct; 170(2-3):1156-63. PubMed ID: 19541411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: a potential Cd-hyperaccumulator and As-excluder Bidens pilosa L.
    Sun YB; Zhou QX; Liu WT; An J; Xu ZQ; Wang L
    J Hazard Mater; 2009 Jun; 165(1-3):1023-8. PubMed ID: 19070954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens.
    Santos FS; Hernández-Allica J; Becerril JM; Amaral-Sobrinho N; Mazur N; Garbisu C
    Chemosphere; 2006 Sep; 65(1):43-50. PubMed ID: 16624375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry.
    Andra SS; Datta R; Sarkar D; Saminathan SK; Mullens CP; Bach SB
    Environ Pollut; 2009 Jul; 157(7):2173-83. PubMed ID: 19282075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening for heavy metal accumulators amongst autochtonous plants in a polluted site in Italy.
    Massa N; Andreucci F; Poli M; Aceto M; Barbato R; Berta G
    Ecotoxicol Environ Saf; 2010 Nov; 73(8):1988-97. PubMed ID: 20884049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb(2+) by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity.
    Estrella-Gómez N; Mendoza-Cózatl D; Moreno-Sánchez R; González-Mendoza D; Zapata-Pérez O; Martínez-Hernández A; Santamaría JM
    Aquat Toxicol; 2009 Mar; 91(4):320-8. PubMed ID: 19110323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana.
    Wirtz M; Droux M; Hell R
    J Exp Bot; 2004 Aug; 55(404):1785-98. PubMed ID: 15258168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of iodide to enhance the phytoextraction of mercury-contaminated soil.
    Wang Y; Greger M
    Sci Total Environ; 2006 Sep; 368(1):30-9. PubMed ID: 16236348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of roots in cysteine biosynthesis by Arabidopsis thaliana.
    Barroso C; Vega JM; Gotor C
    J Physiol Biochem; 1998 Dec; 54(4):189-94. PubMed ID: 10225410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.