BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 178534)

  • 21. Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b.
    Gu W; Farhan Ul Haque M; DiSpirito AA; Semrau JD
    FEMS Microbiol Lett; 2016 Jul; 363(13):. PubMed ID: 27190151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies on human placental carbon monoxide-binding cytochromes.
    Juchau MR; Zachariah PK; Colson J; Symms KG; Krasner J; Yaffe SJ
    Drug Metab Dispos; 1974; 2(1):79-86. PubMed ID: 4150139
    [No Abstract]   [Full Text] [Related]  

  • 23. Purification of a high specific activity methane monooxygenase hydroxylase component from a type II methanotroph.
    Fox BG; Lipscomb JD
    Biochem Biophys Res Commun; 1988 Jul; 154(1):165-70. PubMed ID: 2840063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of NADH in uncoupled microsomal monoxygenations.
    Staudt H; Lichtenberger F; Ullrich V
    Eur J Biochem; 1974 Jul; 46(1):99-106. PubMed ID: 4153145
    [No Abstract]   [Full Text] [Related]  

  • 25. Characterization of the role of copCD in copper uptake and the 'copper-switch' in Methylosinus trichosporium OB3b.
    Gu W; Farhan Ul Haque M; Semrau JD
    FEMS Microbiol Lett; 2017 May; 364(10):. PubMed ID: 28472429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of oxidative phosphorylation in the chemoautotroph Nitrobacter agilis.
    Aleem MI
    Biochim Biophys Acta; 1968 Oct; 162(3):338-47. PubMed ID: 4300593
    [No Abstract]   [Full Text] [Related]  

  • 27. Methanobactin from Methylocystis sp. strain SB2 affects gene expression and methane monooxygenase activity in Methylosinus trichosporium OB3b.
    Farhan Ul-Haque M; Kalidass B; Vorobev A; Baral BS; DiSpirito AA; Semrau JD
    Appl Environ Microbiol; 2015 Apr; 81(7):2466-73. PubMed ID: 25616801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon source regulation of gene expression in Methylosinus trichosporium OB3b.
    Farhan Ul Haque M; Gu W; Baral BS; DiSpirito AA; Semrau JD
    Appl Microbiol Biotechnol; 2017 May; 101(9):3871-3879. PubMed ID: 28108763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil.
    Han JS; Ahn CM; Mahanty B; Kim CG
    Appl Biochem Biotechnol; 2013 Nov; 171(6):1487-99. PubMed ID: 23963715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preliminary crystallographic analysis of methane mono-oxygenase hydroxylase from Methylosinus trichosporium OB3b.
    Froland WA; Dyer DH; Radhakrishnan R; Earhart CA; Lipscomb JD; Ohlendorf DH
    J Mol Biol; 1994 Feb; 236(1):379-81. PubMed ID: 8107121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The substrate binding cavity of particulate methane monooxygenase from Methylosinus trichosporium OB3b expresses high enantioselectivity for n-butane and n-pentane oxidation to 2-alcohol.
    Miyaji A; Miyoshi T; Motokura K; Baba T
    Biotechnol Lett; 2011 Nov; 33(11):2241-6. PubMed ID: 21744144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Steady-state kinetic analysis of soluble methane mono-oxygenase from Methylococcus capsulatus (Bath).
    Green J; Dalton H
    Biochem J; 1986 May; 236(1):155-62. PubMed ID: 3098230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Methane monooxygenases hydroxylase from a type II methanotroph: purification and physical-chemical properties].
    Hua SF; Li SB; Xin JY; Niu JZ; Xia CG; Tang W; Hu XX
    Sheng Wu Gong Cheng Xue Bao; 2006 Nov; 22(6):1007-12. PubMed ID: 17168328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The cytochrome system of Azotobacter vinelandii.
    Jones CW; Redfearn ER
    Biochim Biophys Acta; 1967 Sep; 143(2):340-53. PubMed ID: 4292889
    [No Abstract]   [Full Text] [Related]  

  • 35. Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates.
    Hatzinger PB; Banerjee R; Rezes R; Streger SH; McClay K; Schaefer CE
    Biodegradation; 2017 Dec; 28(5-6):453-468. PubMed ID: 29022194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of allylthiourea to produce soluble methane monooxygenase in the presence of copper.
    Yu Y; Ramsay JA; Ramsay BA
    Appl Microbiol Biotechnol; 2009 Feb; 82(2):333-9. PubMed ID: 19107472
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the mechanism of C-H activation: oxidation of methylcubane by soluble methane monooxygenase from Methylosinus trichosporium OB3b.
    Jin Y; Lipscomb JD
    Biochemistry; 1999 May; 38(19):6178-86. PubMed ID: 10320346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon monoxide binding studies of cytochrome a3 hemes in intact rat liver mitochondria.
    Wohlrab H; Ogunmola GB
    Biochemistry; 1971 Mar; 10(7):1103-6. PubMed ID: 4324202
    [No Abstract]   [Full Text] [Related]  

  • 39. The cytochrome system of Bacillus megaterium KM. The presence and some properties of two CO-binding cytochromes.
    Broberg PL; Smith L
    Biochim Biophys Acta; 1967 May; 131(3):479-89. PubMed ID: 4292158
    [No Abstract]   [Full Text] [Related]  

  • 40. [Localization of energy generators in methane oxidizing bacteria].
    Monosov EZ; Netrusov AI
    Mikrobiologiia; 1976 JUL-AUG; 45(4):598-601. PubMed ID: 185500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.