BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 17853421)

  • 41. In vivo study of osteogenerating properties of calcium-phosphate coating on titanium alloy Ti-6Al-4V.
    Gnedenkov SV; Sinebryukhov SL; Puz AV; Egorkin VS; Kostiv RE
    Biomed Mater Eng; 2016; 27(6):551-560. PubMed ID: 28234240
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biocompatibility and osteoconduction of active porous calcium-phosphate films on a novel Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy.
    Yu S; Yu Z; Wang G; Han J; Ma X; Dargusch MS
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):103-15. PubMed ID: 21439798
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of pulse ratio on codeposition of copper species with calcium phosphate coatings on titanium by means of electrochemically assisted deposition.
    Wolf-Brandstetter C; Oswald S; Bierbaum S; Wiesmann HP; Scharnweber D
    J Biomed Mater Res B Appl Biomater; 2014 Jan; 102(1):160-72. PubMed ID: 23908003
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An electrodeposition method of calcium phosphate coatings on titanium alloy.
    Lopez-Heredia MA; Weiss P; Layrolle P
    J Mater Sci Mater Med; 2007 Feb; 18(2):381-90. PubMed ID: 17323172
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomimetic calcium phosphate coating on Ti-7.5Mo alloy for dental application.
    Escada AL; Machado JP; Schneider SG; Rezende MC; Claro AP
    J Mater Sci Mater Med; 2011 Nov; 22(11):2457-65. PubMed ID: 21909642
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dissolution behavior of calcium phosphate nanocrystals deposited on titanium alloy surfaces.
    Pezeshki P; Lugowski S; Davies JE
    J Biomed Mater Res A; 2010 Aug; 94(2):660-6. PubMed ID: 20564359
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrolytic deposition of lithium into calcium phosphate coatings.
    Wang J; de Groot K; van Blitterswijk C; de Boer J
    Dent Mater; 2009 Mar; 25(3):353-9. PubMed ID: 18804857
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of surface modification on the in vitro corrosion rate of magnesium alloy AZ31.
    Gray-Munro JE; Seguin C; Strong M
    J Biomed Mater Res A; 2009 Oct; 91(1):221-30. PubMed ID: 18814220
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrical polarization of plasma-spray-hydroxyapatite coatings for improvement of osteoconduction of implants.
    Kato R; Nakamura S; Katayama K; Yamashita K
    J Biomed Mater Res A; 2005 Sep; 74(4):652-8. PubMed ID: 16021619
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metal release from ceramic coatings for dental implants.
    Mohedano M; Matykina E; Arrabal R; Pardo A; Merino MC
    Dent Mater; 2014 Mar; 30(3):e28-40. PubMed ID: 24438823
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A peptide-based biological coating for enhanced corrosion resistance of titanium alloy biomaterials in chloride-containing fluids.
    Muruve N; Feng Y; Platnich J; Hassett D; Irvin R; Muruve D; Cheng F
    J Biomater Appl; 2017 Mar; 31(8):1225-1234. PubMed ID: 28274193
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Preparation of calcium phosphate coatings on surfaces of commercially pure titanium induced by simulated body fluid].
    Deng W; Wang Y; Jiang T; Chen Q; Zhou B; Cheng X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Sep; 19(3):374-7. PubMed ID: 12557500
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Fast formation of biomimetic apatite coatings on pure porous titanium implant's surface].
    He F; Lin L; Zhao S; Zhao S; Chen S; Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Aug; 24(4):806-11. PubMed ID: 17899750
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants.
    Barrère F; van der Valk CM; Dalmeijer RA; van Blitterswijk CA; de Groot K; Layrolle P
    J Biomed Mater Res A; 2003 Feb; 64(2):378-87. PubMed ID: 12522826
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Delicate refinement of surface nanotopography by adjusting TiO2 coating chemical composition for enhanced interfacial biocompatibility.
    Zhao X; Wang G; Zheng H; Lu Z; Zhong X; Cheng X; Zreiqat H
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8203-9. PubMed ID: 23957368
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of strontium doping on the biocompatibility of calcium phosphate-coated titanium substrates.
    Nguyen TT; Jang YS; Lee MH; Bae TS
    J Appl Biomater Funct Mater; 2019; 17(1):2280800019826517. PubMed ID: 30803306
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Histological and biomechanical evaluation of calcium phosphate coatings applied through surface-induced mineralization to porous titanium implants.
    Wheeler DL; Campbell AA; Graff GL; Miller GJ
    J Biomed Mater Res; 1997 Mar; 34(4):539-43. PubMed ID: 9054537
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physical properties and cellular responses to calcium phosphate coating produced by laser rapid forming on titanium.
    Gao Y; Hu J; Guan TH; Wu J; Zhang CB; Gao B
    Lasers Med Sci; 2014 Jan; 29(1):9-17. PubMed ID: 23139072
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In Vitro Degradation Behaviors of Manganese-Calcium Phosphate Coatings on an Mg-Ca-Zn Alloy.
    Su Y; Su Y; Zai W; Li G; Wen C
    Scanning; 2018; 2018():6268579. PubMed ID: 29643970
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multifunctional polymer coatings for titanium implants.
    Szaraniec B; Pielichowska K; Pac E; Menaszek E
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():950-957. PubMed ID: 30274132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.