These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 17853877)

  • 1. Isolation of intact RNA from cytometrically sorted Saccharomyces cerevisiae for the analysis of intrapopulation diversity of gene expression.
    Achilles J; Stahl F; Harms H; Müller S
    Nat Protoc; 2007; 2(9):2203-11. PubMed ID: 17853877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA isolation from yeast using silica matrices.
    Mutiu AI; Brandl CJ
    J Biomol Tech; 2005 Dec; 16(4):316-7. PubMed ID: 16522851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional and metabolic response in yeast Saccharomyces cerevisiae cells during polyethylene glycol-dependent transformation.
    Kawai S; Phan TA; Kono E; Harada K; Okai C; Fukusaki E; Murata K
    J Basic Microbiol; 2009 Feb; 49(1):73-81. PubMed ID: 18798174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global synthetic-lethality analysis and yeast functional profiling.
    Ooi SL; Pan X; Peyser BD; Ye P; Meluh PB; Yuan DS; Irizarry RA; Bader JS; Spencer FA; Boeke JD
    Trends Genet; 2006 Jan; 22(1):56-63. PubMed ID: 16309778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression profiling of the bottom fermenting yeast Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays.
    Minato T; Yoshida S; Ishiguro T; Shimada E; Mizutani S; Kobayashi O; Yoshimoto H
    Yeast; 2009 Mar; 26(3):147-65. PubMed ID: 19243081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in gene expression of commercial baker's yeast during an air-drying process that simulates dried yeast production.
    Nakamura T; Mizukami-Murata S; Ando A; Murata Y; Takagi H; Shima J
    J Biosci Bioeng; 2008 Oct; 106(4):405-8. PubMed ID: 19000619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of genetic interactions on a genome-wide scale in budding yeast: diploid-based synthetic lethality analysis by microarray.
    Meluh PB; Pan X; Yuan DS; Tiffany C; Chen O; Sookhai-Mahadeo S; Wang X; Peyser BD; Irizarry R; Spencer FA; Boeke JD
    Methods Mol Biol; 2008; 416():221-47. PubMed ID: 18392971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray.
    Dinh TN; Nagahisa K; Yoshikawa K; Hirasawa T; Furusawa C; Shimizu H
    Bioprocess Biosyst Eng; 2009 Aug; 32(5):681-8. PubMed ID: 19125301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of flocculation ability of brewing yeast inoculates by flow cytometry, proteome analysis, and mRNA profiling.
    Heine F; Stahl F; Sträuber H; Wiacek C; Benndorf D; Repenning C; Schmidt F; Scheper T; von Bergen M; Harms H; Müller S
    Cytometry A; 2009 Feb; 75(2):140-7. PubMed ID: 19072835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast.
    de Godoy LM; Olsen JV; Cox J; Nielsen ML; Hubner NC; Fröhlich F; Walther TC; Mann M
    Nature; 2008 Oct; 455(7217):1251-4. PubMed ID: 18820680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A waterbath method for preparation of RNA from Saccharomyces cerevisiae.
    Li J; Liu J; Wang X; Zhao L; Chen Q; Zhao W
    Anal Biochem; 2009 Jan; 384(1):189-90. PubMed ID: 18840398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of copper toxicity in Saccharomyces cerevisiae determined by microarray analysis.
    Yasokawa D; Murata S; Kitagawa E; Iwahashi Y; Nakagawa R; Hashido T; Iwahashi H
    Environ Toxicol; 2008 Oct; 23(5):599-606. PubMed ID: 18528910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Total RNA isolation from recalcitrant yeast cells.
    Amin-ul Mannan M; Sharma S; Ganesan K
    Anal Biochem; 2009 Jun; 389(1):77-9. PubMed ID: 19302974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast tRNA as carrier in the isolation of microscale RNA for global amplification and expression profiling.
    Wang QT; Xiao W; Mindrinos M; Davis RW
    Biotechniques; 2002 Oct; 33(4):788, 790, 792 passim. PubMed ID: 12398187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of sampling techniques for parallel analysis of transcript and metabolite levels in Saccharomyces cerevisiae.
    Martins AM; Sha W; Evans C; Martino-Catt S; Mendes P; Shulaev V
    Yeast; 2007 Mar; 24(3):181-8. PubMed ID: 17230580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-synchronized clustering of gene expression trajectories.
    Tang R; Müller HG
    Biostatistics; 2009 Jan; 10(1):32-45. PubMed ID: 18502728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A yeast hybrid provides insight into the evolution of gene expression regulation.
    Tirosh I; Reikhav S; Levy AA; Barkai N
    Science; 2009 May; 324(5927):659-62. PubMed ID: 19407207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis of the effects of location and number of stress response elements on gene expression in Saccharomyces cerevisiae.
    Yoshikawa K; Furusawa C; Hirasawa T; Shimizu H
    J Biosci Bioeng; 2008 Nov; 106(5):507-10. PubMed ID: 19111649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global gene expression profile of Saccharomyces cerevisiae induced by dictamnine.
    Guo N; Yu L; Meng R; Fan J; Wang D; Sun G; Deng X
    Yeast; 2008 Sep; 25(9):631-41. PubMed ID: 18727144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines.
    Birnbaum K; Jung JW; Wang JY; Lambert GM; Hirst JA; Galbraith DW; Benfey PN
    Nat Methods; 2005 Aug; 2(8):615-9. PubMed ID: 16170893
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.