BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17854050)

  • 1. Prediction of onset of crystallization from experimental relaxation times. II. Comparison between predicted and experimental onset times.
    Bhugra C; Shmeis R; Krill SL; Pikal MJ
    J Pharm Sci; 2008 Jan; 97(1):455-72. PubMed ID: 17854050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictions of onset of crystallization from experimental relaxation times I-correlation of molecular mobility from temperatures above the glass transition to temperatures below the glass transition.
    Bhugra C; Shmeis R; Krill SL; Pikal MJ
    Pharm Res; 2006 Oct; 23(10):2277-90. PubMed ID: 16933094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between the crystallization rates of amorphous nifedipine, phenobarbital, and flopropione, and their molecular mobility as measured by their enthalpy relaxation and (1)H NMR relaxation times.
    Aso Y; Yoshioka S; Kojima S
    J Pharm Sci; 2000 Mar; 89(3):408-16. PubMed ID: 10707020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the onset of crystallization of amorphous sucrose below the calorimetric glass transition temperature from correlations with mobility.
    Bhugra C; Rambhatla S; Bakri A; Duddu SP; Miller DP; Pikal MJ; Lechuga-Ballesteros D
    J Pharm Sci; 2007 May; 96(5):1258-69. PubMed ID: 17455303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different measures of molecular mobility: comparison between calorimetric and thermally stimulated current relaxation times below Tg and correlation with dielectric relaxation times above Tg.
    Bhugra C; Shmeis R; Krill SL; Pikal MJ
    J Pharm Sci; 2008 Oct; 97(10):4498-515. PubMed ID: 18271035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of onset of crystallization in amorphous pharmaceutical systems: phenobarbital, nifedipine/PVP, and phenobarbital/PVP.
    Caron V; Bhugra C; Pikal MJ
    J Pharm Sci; 2010 Sep; 99(9):3887-900. PubMed ID: 20575050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly(vinylpyrrolidone) solid dispersions.
    Aso Y; Yoshioka S; Kojima S
    J Pharm Sci; 2004 Feb; 93(2):384-91. PubMed ID: 14705195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A calorimetric investigation of thermodynamic and molecular mobility contributions to the physical stability of two pharmaceutical glasses.
    Zhou D; Grant DJ; Zhang GG; Law D; Schmitt EA
    J Pharm Sci; 2007 Jan; 96(1):71-83. PubMed ID: 17031846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of molecular mobility in the glassy state between amorphous indomethacin and salicin based on spin-lattice relaxation times.
    Masuda K; Tabata S; Sakata Y; Hayase T; Yonemochi E; Terada K
    Pharm Res; 2005 May; 22(5):797-805. PubMed ID: 15906176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance.
    Alie J; Menegotto J; Cardon P; Duplaa H; Caron A; Lacabanne C; Bauer M
    J Pharm Sci; 2004 Jan; 93(1):218-33. PubMed ID: 14648651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature.
    Yoshioka M; Hancock BC; Zografi G
    J Pharm Sci; 1994 Dec; 83(12):1700-5. PubMed ID: 7891297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mobility as an effective predictor of the physical stability of amorphous trehalose.
    Bhardwaj SP; Suryanarayanan R
    Mol Pharm; 2012 Nov; 9(11):3209-17. PubMed ID: 23003337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependence of molecular mobility during structural relaxation and its impact on organic amorphous solids: an investigation based on a calorimetric approach.
    Mao C; Chamarthy SP; Pinal R
    Pharm Res; 2006 Aug; 23(8):1906-17. PubMed ID: 16858653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glass transition and enthalpy relaxation of amorphous lactose glass.
    Haque MK; Kawai K; Suzuki T
    Carbohydr Res; 2006 Aug; 341(11):1884-9. PubMed ID: 16709405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures.
    Hancock BC; Shamblin SL; Zografi G
    Pharm Res; 1995 Jun; 12(6):799-806. PubMed ID: 7667182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular mobility of supercooled amorphous indomethacin as a function of temperature and relative humidity.
    Andronis V; Zografi G
    Pharm Res; 1998 Jun; 15(6):835-42. PubMed ID: 9647347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallization Propensity of Amorphous Pharmaceuticals: Kinetics and Thermodynamics.
    Krishna Kumar NS; Suryanarayanan R
    Mol Pharm; 2022 Feb; 19(2):472-483. PubMed ID: 34979803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the physical stability of amorphous felodipine and nifedipine systems.
    Marsac PJ; Konno H; Taylor LS
    Pharm Res; 2006 Oct; 23(10):2306-16. PubMed ID: 16927182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between molecular mobility and physical stability of amorphous itraconazole.
    Bhardwaj SP; Arora KK; Kwong E; Templeton A; Clas SD; Suryanarayanan R
    Mol Pharm; 2013 Feb; 10(2):694-700. PubMed ID: 23198856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explanation of the crystallization rate of amorphous nifedipine and phenobarbital from their molecular mobility as measured by (13)C nuclear magnetic resonance relaxation time and the relaxation time obtained from the heating rate dependence of the glass transition temperature.
    Aso Y; Yoshioka S; Kojima S
    J Pharm Sci; 2001 Jun; 90(6):798-806. PubMed ID: 11357180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.