These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 17854207)

  • 1. Fine-tuning size of gold nanoparticles by cooling during reverse micelle synthesis.
    Smetana AB; Wang JS; Boeckl J; Brown GJ; Wai CM
    Langmuir; 2007 Oct; 23(21):10429-32. PubMed ID: 17854207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous tuning of cadmium sulfide and zinc sulfide nanoparticle size in a water-in-supercritical carbon dioxide microemulsion.
    Fernandez CA; Wai CM
    Chemistry; 2007; 13(20):5838-44. PubMed ID: 17443835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse micelle synthesis of rhodium nanoparticles.
    Hoefelmeyer JD; Liu H; Somorjai GA; Tilley TD
    J Colloid Interface Sci; 2007 May; 309(1):86-93. PubMed ID: 17229435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous-organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold nanofilms at the oil/water interface and on solid supports.
    Feng X; Ma H; Huang S; Pan W; Zhang X; Tian F; Gao C; Cheng Y; Luo J
    J Phys Chem B; 2006 Jun; 110(25):12311-7. PubMed ID: 16800553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungal based synthesis of silver nanoparticles--an effect of temperature on the size of particles.
    Mohammed Fayaz A; Balaji K; Kalaichelvan PT; Venkatesan R
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):123-6. PubMed ID: 19674875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size control of metal nanoparticle catalysts for the gas-phase synthesis of single-walled carbon nanotubes.
    Saito T; Ohshima S; Xu WC; Ago H; Yumura M; Iijima S
    J Phys Chem B; 2005 Jun; 109(21):10647-52. PubMed ID: 16852292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological synthesis of gold nanocubes from Bacillus licheniformis.
    Kalishwaralal K; Deepak V; Ram Kumar Pandian S; Gurunathan S
    Bioresour Technol; 2009 Nov; 100(21):5356-8. PubMed ID: 19574037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative model for prediction of hydrodynamic size of nonionic reverse micelles.
    Michaels MA; Sherwood S; Kidwell M; Allsbrook MJ; Morrison SA; Rutan SC; Carpenter EE
    J Colloid Interface Sci; 2007 Jul; 311(1):70-6. PubMed ID: 17391691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of microwave radiation on the growth of gold nanoparticles and microporous zincophosphates in a reverse micellar system.
    Doolittle JW; Dutta PK
    Langmuir; 2006 May; 22(10):4825-31. PubMed ID: 16649802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles.
    Han Y; Jiang J; Lee SS; Ying JY
    Langmuir; 2008 Jun; 24(11):5842-8. PubMed ID: 18465888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and size control of monodisperse copper nanoparticles by polyol method.
    Park BK; Jeong S; Kim D; Moon J; Lim S; Kim JS
    J Colloid Interface Sci; 2007 Jul; 311(2):417-24. PubMed ID: 17448490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The synthesis of SERS-active gold nanoflower tags for in vivo applications.
    Xie J; Zhang Q; Lee JY; Wang DI
    ACS Nano; 2008 Dec; 2(12):2473-80. PubMed ID: 19206281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores.
    Kim JH; Bryan WW; Lee TR
    Langmuir; 2008 Oct; 24(19):11147-52. PubMed ID: 18788760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turkevich method for gold nanoparticle synthesis revisited.
    Kimling J; Maier M; Okenve B; Kotaidis V; Ballot H; Plech A
    J Phys Chem B; 2006 Aug; 110(32):15700-7. PubMed ID: 16898714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles of [Fe(NH2-trz)3]Br2.3H2O (NH2-trz=2-amino-1,2,4-triazole) prepared by the reverse micelle technique: influence of particle and coherent domain sizes on spin-crossover properties.
    Forestier T; Kaiba A; Pechev S; Denux D; Guionneau P; Etrillard C; Daro N; Freysz E; Létard JF
    Chemistry; 2009 Jun; 15(25):6122-30. PubMed ID: 19504472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size dependent catalysis with CTAB-stabilized gold nanoparticles.
    Fenger R; Fertitta E; Kirmse H; Thünemann AF; Rademann K
    Phys Chem Chem Phys; 2012 Jul; 14(26):9343-9. PubMed ID: 22549475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the water content on the growth rate of AgCl nanoparticles in a reversed micelle system.
    Kimijima K; Sugimoto T
    J Colloid Interface Sci; 2005 Jun; 286(2):520-5. PubMed ID: 15897066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile optimal synthesis of inherently electroconductive polythiophene nanoparticles.
    Li XG; Li J; Huang MR
    Chemistry; 2009 Jun; 15(26):6446-55. PubMed ID: 19466721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli.
    Gurunathan S; Kalishwaralal K; Vaidyanathan R; Venkataraman D; Pandian SR; Muniyandi J; Hariharan N; Eom SH
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):328-35. PubMed ID: 19716685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.