BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 17854229)

  • 1. Influence of the sensitizer adsorption mode on the open-circuit potential of dye-sensitized solar cells.
    De Angelis F; Fantacci S; Selloni A; Grätzel M; Nazeeruddin MK
    Nano Lett; 2007 Oct; 7(10):3189-95. PubMed ID: 17854229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced photovoltaic properties of Nb₂O₅-coated TiO₂ 3D ordered porous electrodes in dye-sensitized solar cells.
    Kim HN; Moon JH
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5821-5. PubMed ID: 23153118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells: influence of lithium ions on the photovoltaic performance of liquid and solid-state cells.
    Kuang D; Klein C; Snaith HJ; Moser JE; Humphry-Baker R; Comte P; Zakeeruddin SM; Grätzel M
    Nano Lett; 2006 Apr; 6(4):769-73. PubMed ID: 16608281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells.
    Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M
    ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO(2) hollow fibers.
    Ghadiri E; Taghavinia N; Zakeeruddin SM; Grätzel M; Moser JE
    Nano Lett; 2010 May; 10(5):1632-8. PubMed ID: 20423062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells.
    He Z; Guai G; Liu J; Guo C; Loo JS; Li CM; Tan TT
    Nanoscale; 2011 Nov; 3(11):4613-6. PubMed ID: 22006266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient solar cells using TiO(2) nanotube arrays sensitized with a donor-antenna dye.
    Shankar K; Bandara J; Paulose M; Wietasch H; Varghese OK; Mor GK; LaTempa TJ; Thelakkat M; Grimes CA
    Nano Lett; 2008 Jun; 8(6):1654-9. PubMed ID: 18444689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TiO2 derived by titanate route from electrospun nanostructures for high-performance dye-sensitized solar cells.
    Nair AS; Zhu P; Babu VJ; Yang S; Krishnamoorthy T; Murugan R; Peng S; Ramakrishna S
    Langmuir; 2012 Apr; 28(15):6202-6. PubMed ID: 22469013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical TiO2 microspheres comprised of anatase nanospindles for improved electron transport in dye-sensitized solar cells.
    Wu D; Wang Y; Dong H; Zhu F; Gao S; Jiang K; Fu L; Zhang J; Xu D
    Nanoscale; 2013 Jan; 5(1):324-30. PubMed ID: 23165289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of an ultrathin TiO(2) layer coated on submicrometer-sized ZnO nanocrystallite aggregates by atomic layer deposition on the performance of dye-sensitized solar cells.
    Park K; Zhang Q; Garcia BB; Zhou X; Jeong YH; Cao G
    Adv Mater; 2010 Jun; 22(21):2329-32. PubMed ID: 20376847
    [No Abstract]   [Full Text] [Related]  

  • 11. Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells.
    Yip CT; Guo M; Huang H; Zhou L; Wang Y; Huang C
    Nanoscale; 2012 Jan; 4(2):448-50. PubMed ID: 22159643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode.
    Jang YH; Xin X; Byun M; Jang YJ; Lin Z; Kim DH
    Nano Lett; 2012 Jan; 12(1):479-85. PubMed ID: 22148913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode.
    Ma T; Akiyama M; Abe E; Imai I
    Nano Lett; 2005 Dec; 5(12):2543-7. PubMed ID: 16351212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of graphenes in nanostructured TiO(2) films via molecular grafting for dye-sensitized solar cell application.
    Tang YB; Lee CS; Xu J; Liu ZT; Chen ZH; He Z; Cao YL; Yuan G; Song H; Chen L; Luo L; Cheng HM; Zhang WJ; Bello I; Lee ST
    ACS Nano; 2010 Jun; 4(6):3482-8. PubMed ID: 20455548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocurrent-voltage of a dye-sensitized nanocrystalline TiO2 solar cells influenced by N719 dye adsorption properties.
    Lee JW; Hwang KJ; Park DW; Park KH; Shim WG; Kim SC
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3717-21. PubMed ID: 18047044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement in performances of dye-sensitized solar cell with SiO2-coated TiO2 photoelectrode.
    Mohan VM; Shimomura M; Murakami K
    J Nanosci Nanotechnol; 2012 Jan; 12(1):433-8. PubMed ID: 22523998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells.
    Wang H; Bai Y; Wu Q; Zhou W; Zhang H; Li J; Guo L
    Phys Chem Chem Phys; 2011 Apr; 13(15):7008-13. PubMed ID: 21399795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced conversion efficiency in dye-sensitized solar cells based on bilayered nano-composite photoanode film consisting of TiO2 nanoparticles and nanofibers.
    Du PF; Song LX; Xiong J
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4164-9. PubMed ID: 24738365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZnO nanosheets decorated with CdSe and TiO2 for the architecture of dye-sensitized solar cells.
    Kim YT; Park MY; Choi KH; Tai WS; Shim WH; Park SY; Kang JW; Lee KH; Jeong Y; Kim YD; Lim DC
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2263-8. PubMed ID: 21449378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells.
    Zhu G; Pan L; Xu T; Zhao Q; Lu B; Sun Z
    Nanoscale; 2011 May; 3(5):2188-93. PubMed ID: 21451826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.