BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17855402)

  • 21. Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress.
    Yan S; Sorrell M; Berman Z
    Cell Mol Life Sci; 2014 Oct; 71(20):3951-67. PubMed ID: 24947324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Replication checkpoint: tuning and coordination of replication forks in s phase.
    Hustedt N; Gasser SM; Shimada K
    Genes (Basel); 2013 Aug; 4(3):388-434. PubMed ID: 24705211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Divergent mechanisms for enzymatic excision of 5-formylcytosine and 5-carboxylcytosine from DNA.
    Maiti A; Michelson AZ; Armwood CJ; Lee JK; Drohat AC
    J Am Chem Soc; 2013 Oct; 135(42):15813-22. PubMed ID: 24063363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opening pathways of the DNA clamps proliferating cell nuclear antigen and Rad9-Rad1-Hus1.
    Xu X; Guardiani C; Yan C; Ivanov I
    Nucleic Acids Res; 2013 Dec; 41(22):10020-31. PubMed ID: 24038358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Histone deacetylase SIRT1 modulates and deacetylates DNA base excision repair enzyme thymine DNA glycosylase.
    Madabushi A; Hwang BJ; Jin J; Lu AL
    Biochem J; 2013 Nov; 456(1):89-98. PubMed ID: 23952905
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The DNA damage checkpoint protein RAD9A is essential for male meiosis in the mouse.
    Vasileva A; Hopkins KM; Wang X; Weisbach MM; Friedman RA; Wolgemuth DJ; Lieberman HB
    J Cell Sci; 2013 Sep; 126(Pt 17):3927-38. PubMed ID: 23788429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conditional inactivation of the DNA damage response gene Hus1 in mouse testis reveals separable roles for components of the RAD9-RAD1-HUS1 complex in meiotic chromosome maintenance.
    Lyndaker AM; Lim PX; Mleczko JM; Diggins CE; Holloway JK; Holmes RJ; Kan R; Schlafer DH; Freire R; Cohen PE; Weiss RS
    PLoS Genet; 2013; 9(2):e1003320. PubMed ID: 23468651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding the role of the Q338H MUTYH variant in oxidative damage repair.
    Turco E; Ventura I; Minoprio A; Russo MT; Torreri P; Degan P; Molatore S; Ranzani GN; Bignami M; Mazzei F
    Nucleic Acids Res; 2013 Apr; 41(7):4093-103. PubMed ID: 23460202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localization of the Drosophila Rad9 protein to the nuclear membrane is regulated by the C-terminal region and is affected in the meiotic checkpoint.
    Kadir R; Bakhrat A; Tokarsky R; Abdu U
    PLoS One; 2012; 7(5):e38010. PubMed ID: 22666434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Repair complexes of FEN1 endonuclease, DNA, and Rad9-Hus1-Rad1 are distinguished from their PCNA counterparts by functionally important stability.
    Querol-Audí J; Yan C; Xu X; Tsutakawa SE; Tsai MS; Tainer JA; Cooper PK; Nogales E; Ivanov I
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8528-33. PubMed ID: 22586102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contributions of Rad9 to tumorigenesis.
    Broustas CG; Lieberman HB
    J Cell Biochem; 2012 Mar; 113(3):742-51. PubMed ID: 22034047
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dependence of substrate binding and catalysis on pH, ionic strength, and temperature for thymine DNA glycosylase: Insights into recognition and processing of G·T mispairs.
    Maiti A; Drohat AC
    DNA Repair (Amst); 2011 May; 10(5):545-53. PubMed ID: 21474392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A role for the arginine methylation of Rad9 in checkpoint control and cellular sensitivity to DNA damage.
    He W; Ma X; Yang X; Zhao Y; Qiu J; Hang H
    Nucleic Acids Res; 2011 Jun; 39(11):4719-27. PubMed ID: 21321020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stoichiometry and affinity for thymine DNA glycosylase binding to specific and nonspecific DNA.
    Morgan MT; Maiti A; Fitzgerald ME; Drohat AC
    Nucleic Acids Res; 2011 Mar; 39(6):2319-29. PubMed ID: 21097883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of bimolecular fluorescence complementation using Dronpa for visualization of protein-protein interactions in cells.
    Lee YR; Park JH; Hahm SH; Kang LW; Chung JH; Nam KH; Hwang KY; Kwon IC; Han YS
    Mol Imaging Biol; 2010 Oct; 12(5):468-78. PubMed ID: 20373040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction between human mismatch repair recognition proteins and checkpoint sensor Rad9-Rad1-Hus1.
    Bai H; Madabushi A; Guan X; Lu AL
    DNA Repair (Amst); 2010 May; 9(5):478-87. PubMed ID: 20188637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and functional implications of the human rad9-hus1-rad1 cell cycle checkpoint complex.
    Xu M; Bai L; Gong Y; Xie W; Hang H; Jiang T
    J Biol Chem; 2009 Jul; 284(31):20457-61. PubMed ID: 19535328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A tale of two tails: activation of DNA damage checkpoint kinase Mec1/ATR by the 9-1-1 clamp and by Dpb11/TopBP1.
    Navadgi-Patil VM; Burgers PM
    DNA Repair (Amst); 2009 Sep; 8(9):996-1003. PubMed ID: 19464966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long patch base excision repair proceeds via coordinated stimulation of the multienzyme DNA repair complex.
    Balakrishnan L; Brandt PD; Lindsey-Boltz LA; Sancar A; Bambara RA
    J Biol Chem; 2009 May; 284(22):15158-72. PubMed ID: 19329425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rad9 plays an important role in DNA mismatch repair through physical interaction with MLH1.
    He W; Zhao Y; Zhang C; An L; Hu Z; Liu Y; Han L; Bi L; Xie Z; Xue P; Yang F; Hang H
    Nucleic Acids Res; 2008 Nov; 36(20):6406-17. PubMed ID: 18842633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.