BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 17855553)

  • 1. Influenza virus mRNA translation revisited: is the eIF4E cap-binding factor required for viral mRNA translation?
    Burgui I; Yángüez E; Sonenberg N; Nieto A
    J Virol; 2007 Nov; 81(22):12427-38. PubMed ID: 17855553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High affinity RNA for mammalian initiation factor 4E interferes with mRNA-cap binding and inhibits translation.
    Mochizuki K; Oguro A; Ohtsu T; Sonenberg N; Nakamura Y
    RNA; 2005 Jan; 11(1):77-89. PubMed ID: 15611299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex.
    Chiu SY; Lejeune F; Ranganathan AC; Maquat LE
    Genes Dev; 2004 Apr; 18(7):745-54. PubMed ID: 15059963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surprising function of the three influenza viral polymerase proteins: selective protection of viral mRNAs against the cap-snatching reaction catalyzed by the same polymerase proteins.
    Shih SR; Krug RM
    Virology; 1996 Dec; 226(2):430-5. PubMed ID: 8955065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation.
    Svitkin YV; Herdy B; Costa-Mattioli M; Gingras AC; Raught B; Sonenberg N
    Mol Cell Biol; 2005 Dec; 25(23):10556-65. PubMed ID: 16287867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of influenza virus RNP interaction with RNA cap structures and comparison to human cap binding protein eIF4E.
    Hooker L; Sully R; Handa B; Ono N; Koyano H; Klumpp K
    Biochemistry; 2003 May; 42(20):6234-40. PubMed ID: 12755627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influenza virus polymerase confers independence of the cellular cap-binding factor eIF4E for viral mRNA translation.
    Yángüez E; Rodriguez P; Goodfellow I; Nieto A
    Virology; 2012 Jan; 422(2):297-307. PubMed ID: 22112850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eukaryotic translation initiation is controlled by cooperativity effects within ternary complexes of 4E-BP1, eIF4E, and the mRNA 5' cap.
    Modrak-Wojcik A; Gorka M; Niedzwiecka K; Zdanowski K; Zuberek J; Niedzwiecka A; Stolarski R
    FEBS Lett; 2013 Dec; 587(24):3928-34. PubMed ID: 24211447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repressor binding to a dorsal regulatory site traps human eIF4E in a high cap-affinity state.
    Ptushkina M; von der Haar T; Karim MM; Hughes JM; McCarthy JE
    EMBO J; 1999 Jul; 18(14):4068-75. PubMed ID: 10406811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. So similar, yet so different: selective translation of capped and polyadenylated viral mRNAs in the influenza virus infected cell.
    Yángüez E; Nieto A
    Virus Res; 2011 Mar; 156(1-2):1-12. PubMed ID: 21195735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of cap-dependent translation by eIF4E inhibitory proteins.
    Richter JD; Sonenberg N
    Nature; 2005 Feb; 433(7025):477-80. PubMed ID: 15690031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Truncated initiation factor eIF4G lacking an eIF4E binding site can support capped mRNA translation.
    Ali IK; McKendrick L; Morley SJ; Jackson RJ
    EMBO J; 2001 Aug; 20(15):4233-42. PubMed ID: 11483526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5' cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins.
    Niedzwiecka A; Marcotrigiano J; Stepinski J; Jankowska-Anyszka M; Wyslouch-Cieszynska A; Dadlez M; Gingras AC; Mak P; Darzynkiewicz E; Sonenberg N; Burley SK; Stolarski R
    J Mol Biol; 2002 Jun; 319(3):615-35. PubMed ID: 12054859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotavirus Nonstructural Protein NSP3 is not required for viral protein synthesis.
    Montero H; Arias CF; Lopez S
    J Virol; 2006 Sep; 80(18):9031-8. PubMed ID: 16940515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of the human eIF4E homologous protein, h4EHP, in its m7GTP-bound and unliganded forms.
    Rosettani P; Knapp S; Vismara MG; Rusconi L; Cameron AD
    J Mol Biol; 2007 May; 368(3):691-705. PubMed ID: 17368478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of the host translation initiation complex eIF4F by DNA viruses.
    Walsh D
    Biochem Soc Trans; 2010 Dec; 38(6):1511-6. PubMed ID: 21118117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of cap-dependent translation in mitosis.
    Pyronnet S; Dostie J; Sonenberg N
    Genes Dev; 2001 Aug; 15(16):2083-93. PubMed ID: 11511540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of three Caenorhabditis elegans isoforms of translation initiation factor eIF4E with mono- and trimethylated mRNA 5' cap analogues.
    Stachelska A; Wieczorek Z; Ruszczyńska K; Stolarski R; Pietrzak M; Lamphear BJ; Rhoads RE; Darzynkiewicz E; Jankowska-Anyszka M
    Acta Biochim Pol; 2002; 49(3):671-82. PubMed ID: 12422237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shiga toxins activate translational regulation pathways in intestinal epithelial cells.
    Colpoys WE; Cochran BH; Carducci TM; Thorpe CM
    Cell Signal; 2005 Jul; 17(7):891-9. PubMed ID: 15763431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eukaryotic initiation factor 4E variants alter the morphology, proliferation, and colony-formation properties of MDA-MB-435 cancer cells.
    Goldson TM; Vielhauer G; Staub E; Miller S; Shim H; Hagedorn CH
    Mol Carcinog; 2007 Jan; 46(1):71-84. PubMed ID: 17091471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.