These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 17855584)

  • 1. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates.
    Jackson A; Fetz EE
    J Neurophysiol; 2007 Nov; 98(5):3109-18. PubMed ID: 17855584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An economical multi-channel cortical electrode array for extended periods of recording during behavior.
    Rennaker RL; Ruyle AM; Street SE; Sloan AM
    J Neurosci Methods; 2005 Mar; 142(1):97-105. PubMed ID: 15652622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An autonomous implantable computer for neural recording and stimulation in unrestrained primates.
    Mavoori J; Jackson A; Diorio C; Fetz E
    J Neurosci Methods; 2005 Oct; 148(1):71-7. PubMed ID: 16102841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HermesB: a continuous neural recording system for freely behaving primates.
    Santhanam G; Linderman MD; Gilja V; Afshar A; Ryu SI; Meng TH; Shenoy KV
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):2037-50. PubMed ID: 18018699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats.
    Tseng WT; Yen CT; Tsai ML
    J Neurosci Methods; 2011 Oct; 201(2):368-76. PubMed ID: 21889539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-chronic motorized microdrive and control algorithm for autonomously isolating and maintaining optimal extracellular action potentials.
    Cham JG; Branchaud EA; Nenadic Z; Greger B; Andersen RA; Burdick JW
    J Neurophysiol; 2005 Jan; 93(1):570-9. PubMed ID: 15229215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Quality of neuronal signal registered in the monkey motor cortex with chronically implanted multiple microwires].
    Bondar' IV; Vasil'eva LN; Badakva AM; Miller NV; Zobova LN; Roshchin VIu
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2014; 64(1):101-12. PubMed ID: 25710068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Telemetric recordings of single neuron activity and visual scenes in monkeys walking in an open field.
    Lei Y; Sun N; Wilson FA; Wang X; Chen N; Yang J; Peng Y; Wang J; Tian S; Wang M; Miao Y; Zhu W; Qi H; Ma Y
    J Neurosci Methods; 2004 May; 135(1-2):35-41. PubMed ID: 15020087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new type of recording chamber with an easy-to-exchange microdrive array for chronic recordings in macaque monkeys.
    Galashan FO; Rempel HC; Meyer A; Gruber-Dujardin E; Kreiter AK; Wegener D
    J Neurophysiol; 2011 Jun; 105(6):3092-105. PubMed ID: 21451061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An acute method for multielectrode recording from the interior of sulci and other deep brain areas.
    Purushothaman G; Scott BB; Bradley DC
    J Neurosci Methods; 2006 May; 153(1):86-94. PubMed ID: 16316688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlations between the same motor cortex cells and arm muscles during a trained task, free behavior, and natural sleep in the macaque monkey.
    Jackson A; Mavoori J; Fetz EE
    J Neurophysiol; 2007 Jan; 97(1):360-74. PubMed ID: 17021028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural modifications in chronic microwire electrodes for cortical neuroprosthetics: a case study.
    Sanchez JC; Alba N; Nishida T; Batich C; Carney PR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):217-21. PubMed ID: 16792298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implantable computer-controlled adaptive multielectrode positioning system.
    Ferrea E; Suriya-Arunroj L; Hoehl D; Thomas U; Gail A
    J Neurophysiol; 2018 Apr; 119(4):1471-1484. PubMed ID: 29187552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for investigating cortical control of stand and squat in conscious behavioral monkeys.
    Ma C; He J
    J Neurosci Methods; 2010 Sep; 192(1):1-6. PubMed ID: 20600310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ceramic-based multisite electrode arrays for chronic single-neuron recording.
    Moxon KA; Leiser SC; Gerhardt GA; Barbee KA; Chapin JK
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):647-56. PubMed ID: 15072219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A technique for repeated recordings in cortical organotypic slices.
    Dong HW; Buonomano DV
    J Neurosci Methods; 2005 Jul; 146(1):69-75. PubMed ID: 15935222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic multiunit recordings in behaving animals: advantages and limitations.
    Supèr H; Roelfsema PR
    Prog Brain Res; 2005; 147():263-82. PubMed ID: 15581712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.